

CLIMATE ACTION PLAN

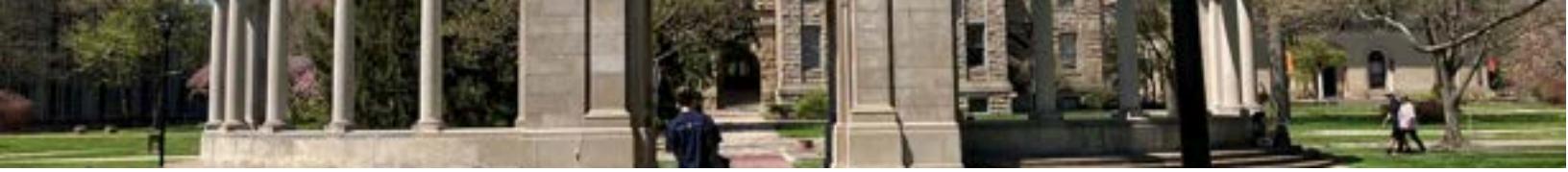

2025 DRAFT FOR REVIEW

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	03
LETTER FROM THE COUNCIL	05
EXECUTIVE SUMMARY	06
TOP 20 PRIORITY PROJECTS (2025–2030)	10
LOCAL CLIMATE IMPACTS AND RISK ASSESSMENT	14
OBERLIN'S CLIMATE ACTION HISTORY & PROGRESS	18
GHG EMISSIONS INVENTORY	27
CLIMATE VISION & EQUITY COMMITMENT	32
COMMUNITY OUTREACH & ENGAGEMENT	37
ENERGY	42
TRANSPORTATION & MOBILITY	47
HOUSING & BUILDINGS	51
LAND USE & TREES SECTOR	55
WATER	59
WASTE & MATERIALS MANAGEMENT	64
FOOD SYSTEMS	68
LOCAL ECONOMY & WORKFORCE	72
EDUCATION & COMMUNITY ENGAGEMENT	76
RESILIENCE & EMERGENCY PREPAREDNESS	81
IMPLEMENTATION AND GOVERNANCE	86
APPENDICES	91

ACKNOWLEDGEMENTS

Many thanks to the dedicated community members, City staff, and institutional partners who participated in the development of this plan and offered invaluable contributions, insights and expertise. As part of the plan development, we engaged over 50 stakeholders to provide their feedback and input. A list of the stakeholders who participated in the Climate Action Plan update process is in Appendix A.

We are especially grateful to Oberlin residents including students, seniors, business owners, and those who are more vulnerable and who shared their lived experiences, priorities, and hopes for a more sustainable, resilient future. Their voices helped shape the vision, strategies, and equity-centered approach of this plan.

The Oberlin Climate Action Plan development was led by Linda Arbogast, Oberlin's Sustainability Coordinator, along with the Climate Action Plan Steering Committee members. We'd like to extend a sincere thank you to the following individuals who served on the Committee and also participated as interviewers or contributors, offering deep institutional knowledge and organizational perspectives.

Beth Wolosz

City of Oberlin Administrative Assistant to the list of committee members

Cindy Frantz

Vice President, Providing Oberlin With Efficiency Responsibly Chair for Psychology Department, Oberlin College

David Hall

Superintendent of City Schools

Eli Butler

Food Programs Outreach Coordinator Oberlin Community Services (OCS)

Heather Adelman

Sustainability Manager, Oberlin College and Conservatory

Jessica Minor

Oberlin Free Store for Kids Co-founder Oberlin Public Library Board Member RCRC Member

JoAnne Sahli

*Associate Partner, ERM
Sustainability and Responsible Supply Chain*

Joe Waltzer

*City Councilperson City of Oberlin
Small Business owner*

John Petersen

Professor of Environmental Studies and Sciences and Biology, Oberlin College

Ralph Thompson

*Social Equity Steering Committee Member
City of Oberlin*

Rebecca Bandy

Board Member, POWER / First Church

Ted Wolner

*Chair, Environmental Concerns Committee
Kendal at Oberlin*

The City also extends its appreciation to institutional as well as community partners including Oberlin College & Conservatory, OMLPS (Oberlin Municipal Light & Power System), POWER (Providing Oberlin With Efficiency Responsibly), and local nonprofits for their partnership and technical input throughout this process.

Finally, we'd like to acknowledge the leadership of the Oberlin City Council and City administration for their ongoing commitment to climate action and their support in advancing this community-centered planning effort.

This plan was prepared and designed by Nutter Consulting, LLC. Thank you to the lead author, Melanie Nutter, as well as other consultant contributors including Silvia Pak Yurrita, Ellie Marchman and Catherine Pappas for their guidance and support.

LETTER FROM THE COUNCIL

Dear Oberlin Residents, Partners, and Community Members,

Oberlin has long been known as a community defined by its courage, compassion, and commitment to justice. For generations, residents have stepped forward to lead on social equity, environmental stewardship, and bold community-driven innovation. More than twenty years ago, Oberlin became one of the first cities in the nation to adopt a community-wide Climate Action Plan - affirming our shared responsibility to reduce greenhouse gas emissions, protect our natural ecosystems, and ensure a healthy, thriving, and equitable future for everyone who calls Oberlin home. Since then, the City, Oberlin Municipal Light & Power System (OMLPS), local organizations, and countless residents have worked together to make meaningful progress and strengthen our community's resilience.

Today, as the impacts of climate change become more visible in our daily lives, Oberlin's long-standing leadership and values call us to act with renewed clarity and purpose. The 2025 Climate Action Plan Update builds on the achievements we've already made and lays out a clear, actionable, and equitable path for the years ahead. This plan is rooted in the insights, concerns, and aspirations shared by hundreds of residents, students, community groups, businesses, and institutions throughout the planning process. Its strategies reflect what matters most to Oberlin: collaboration, innovation, equity, and care for the natural environment.

The updated Climate Action Plan provides a practical and inspiring roadmap for transitioning to a cleaner, healthier, and more resilient future. It outlines the strategies, actions, and priority projects that will guide our work across every sector - from energy and transportation to housing, land use, food systems, and waste. By identifying both early wins and long-term investments, the plan equips us to move forward with confidence and collective resolve. Oberlin's continued climate leadership is possible because of the strength of our community members. Grounded in partnership, informed by scientific data, and guided by our shared commitment to equity, we are ready to meet this moment and ensure that every resident benefits from a more sustainable and climate resilient future.

Thank you for your dedication to this work. Together, we will build a stronger, more resilient, more sustainable and more equitable Oberlin for today and for the future.

Eboni Johnson, City Council President
City of Oberlin

EXECUTIVE SUMMARY

For generations, Oberlin has been a community defined by bold leadership where advancing social justice, championing environmental stewardship, and fostering community-driven innovation are central to our values. That history shapes the foundation of the 2025 Climate Action Plan Update, which builds on more than twenty years of progress to accelerate local emissions reductions, strengthen resilience, and ensure that every resident, especially those most vulnerable to climate impacts, can benefit from a healthier and more sustainable future.

Understanding Oberlin's Climate Risks

Oberlin's 2021 Climate Vulnerability Assessment makes clear that climate change is no longer a distant threat but one that is affecting the community today. By 2030, the number of extreme heat days is expected to triple, while heavy rainfall events are projected to increase by more than 25%, heightening the risk of localized flooding and placing additional strain on aging infrastructure. Warmer temperatures are already expanding the spread of vector-borne diseases. Shifting weather patterns will also place new stresses on local agriculture and food systems. Climate change is likewise already negatively impacting air quality in ways that disproportionately impact the young, old, and health impaired. These impacts will not be felt equally. Seniors, renters, income constrained households, and residents in flood-prone neighborhoods face disproportionate risks, underscoring the need for solutions that prioritize co-benefits such as public health, safety, and equity.

Progress to Build On

Oberlin has made remarkable strides since adopting one of the nation's earliest community-wide Climate Action Plans. Community-wide greenhouse gas emissions have fallen by 69% since 2007 which is a significant achievement. A critical factor has been the transition to 100% carbon-neutral electricity through Oberlin Municipal Light & Power System (OMLPS). Alongside these reductions, the community has expanded composting, improved energy efficiency programs, funded solar energy projects, supported a thriving local food system, invested in sidewalks and bikeway improvements, enhanced environmental communication and education, and planted new trees and pollinator habitat. The majority of remaining emissions now come from natural gas use in buildings and gasoline-powered transportation, which are two areas that are central to the updated plan.

Vision and Goals for Oberlin's Future

This Climate Action Plan envisions a future where residents live in healthy, efficient homes; move through the community using safe, accessible mobility options; and enjoy restored natural spaces that support public health, biodiversity, and a thriving local economy. It's a future where Oberlin residents have a deeper understanding of the resources on which they depend and are resilient in the face of accelerating climate change. To realize this vision, the plan sets clear goals:

Reduce carbon emissions by 75% by 2030

Become a Climate Positive Community by 2050

Accelerate electrification of buildings and vehicles

Invest deeply in climate resilience

Ensure a just transition that prioritizes affordability, health, and equity

Core Strategies for Climate Action

The plan organizes its work across 9 sectors and outlines 39 strategies, 131 actions, and 266 subactions that are fundamental to Oberlin continuing its work to create a resilient and low-carbon community.

Energy

Accelerating building electrification, expanding heat pumps, enhancing energy efficiency, advancing local solar and storage, and modernizing the grid.

Waste & Materials

Reducing waste generation, expanding composting and recycling, and building new systems for repair, reuse, and a more circular local economy.

Transportation

Strengthening transit connectivity, electrifying fleets, expanding EV charging, and creating safer and more attractive walking and biking infrastructure.

Food Systems

Strengthening local agriculture, expanding community gardens, improving access to farmers markets, and reducing food waste through recovery programs.

Core Strategies for Climate Action

The plan organizes its work across 9 sectors and outlines 39 strategies, 131 actions, and 266 subactions that are fundamental to Oberlin continuing its work to create a resilient and low-carbon community.

Housing & Buildings

Expanding sustainable and affordable housing options, upgrading older homes, improving weatherization, and updating zoning to support climate-friendly development.

Land Use & Trees

Expanding tree canopy coverage, restoring natural landscapes, and transforming vacant land into community amenities like parks, mini-forests, and gardens.

Water & Stormwater

Increasing stormwater management capacity, expanding green infrastructure, protecting waterways, and supporting residents living in flood-prone areas.

Local Economy & Workforce

Developing a green workforce pipeline, supporting existing sustainable local businesses, attracting new climate focused businesses and advancing an Eco-Industrial park.

Education & Engagement

Building a robust, inclusive climate education and engagement ecosystem through strengthening school-based climate education, hosting regular climate-focused community dialogues, and expanding culturally relevant outreach and engagement opportunities across Oberlin.

Building a Resilient Community

Beyond emissions reduction, the plan emphasizes resilience by highlighting how the community can prepare for climate hazards identified in the City's 2021 Climate Vulnerability Assessment. Through investments in cooling centers, resilience hubs, microgrids, emergency communications, and neighborhood-based heat and flood protection, the strategies in this plan help to ensure that residents facing the greatest burdens also are prioritized to receive the benefits.

A Community-Driven Path Forward with a Focus on Social Equity

Once the plan implementation begins, Oberlin will rely on strong partnerships with residents, nonprofits, businesses, Oberlin College and Conservatory and regional collaborators to drive projects forward and ensure solutions reflect our community's priorities.

To support this work, the City will proactively seek state and federal grants that leverage local resources and accelerate progress toward a healthier, more resilient future. Above all, this plan reflects the voices of Oberlin including residents, students, farmers, business owners, and City staff who shared their experiences, ideas, and aspirations throughout the process.

The Climate Action Committee has worked to make sure that the plan is inclusive of all residents with an intentional effort to support those who are most vulnerable and are supported by each of the strategies. The plan builds on the City's strengths, including its renewable energy commitment, active civic institutions, and strong culture of engagement.

With a clear, community-centered framework for action, the 2025 Climate Action Plan Update charts a practical and inspiring path forward.

TOP 20 PRIORITY PROJECTS (2025–2030)

Oberlin Climate Action Plan – Highest-Impact, Highest-Feasibility, Equity-Forward Initiatives.

Why These 20 Projects?

These projects represent the highest priorities for the first five years of the 2025 CAP update implementation. They were selected through a scoring process based on:

Prioritization Criteria

Impact

Expected emissions reductions or resilience benefits

Ease

Cost, difficulty of implementation, availability of partners, and staff capacity

Equity and Inclusion

Extent to which benefits reach all underserved or vulnerable populations

All actions across the nine sectors (34 strategies, 97 high level actions with over 200 implementation steps) were evaluated using this framework. The Top 20 represent the projects that scored highest and provide the strongest early wins across climate mitigation, climate resilience, equity, and community well-being.

Underpinning the work for all the priority projects is enhancing the education and communication of opportunities for all of Oberlin's community members to participate. The City and its partners will help achieve these priorities through concerted engagement strategies that best leverage the community dashboard and the combined communication channels of lead organizations such as Oberlin City Schools, OMLPS, Oberlin College, Oberlin Business Partnership, FAA, houses of worship and all other communication channels to engage, educate, motivate and empower the broadest possible participation.

Oberlin's Top 20 Priority Projects include:

01

Accelerate Home Electrification and Energy Efficiency Upgrades

Support widespread heat pump adoption, insulation, weatherization, and appliance electrification, especially in low-income homes working with POWER (Providing Oberlin With Efficiency Responsibly) through incentives and financing tools for renters and homeowners

02

Enhance Commercial and Industrial Electrification and Efficiency Rebates and Promotions

Support fuel-switching and efficiency upgrades for local businesses and industry.

03

Expand Shared and Community-Scale Solar and Solar on City Facilities

Develop legally allowed shared and community-scale solar models that enable for renters and homeowners to benefit from clean energy, with intentional design to benefit lower income community members. Install solar-plus-storage on municipal buildings.

04

Assess and Implement Advanced Metering Infrastructure and Smart Grid Tools

Support the research and development of demand-response programs and technologies to enhance grid efficiency, storage, affordability, and reliability and install smart meters as feasible.

05

Launch Battery Storage Pilots at Critical Facilities

Install backup power systems at fire stations, the wastewater plant, and resilience hubs to strengthen emergency capacity and pilot demand management.

06

Restore and Expand Regional Transit Service

Partner with Lorain County Transit and others to restore and expand regional routes to Cleveland/Elyria and improve local E-bus service.

07

Promote the development of an Eco-Industrial Park in Oberlin

Ensure that all green building design elements are included in the development of the park and promoted broadly to actively attract businesses centered on climate stewardship and sustainability as part of their business model.

08

Complete Key Sidewalk, Bikeway Connections and Covered Bike Parking

Build missing pedestrian and bike links as well as covered bike parking and shaded rest areas in high-need areas to improve safety and equitable access and reduce personal car use.

09

Redesign Priority Streets Using the Complete Streets Approach

Apply the 2015 Complete Streets Policy to priority corridors by redesigning roadways to improve safety and access for people walking, biking, and riding public transit, while reducing dependence on personal vehicles.

10

Develop Affordable, Sustainable Housing on City-Owned Land

Build energy-efficient affordable homes on public parcels with climate ready and resilient design and low energy operating costs.

11

Update Zoning to Support Accessory Dwelling Units (ADUs) and Diverse, Climate-Ready Housing

Enable ADUs, duplexes, cottage courts, and small multifamily homes to increase affordable and sustainable housing options.

12

Expand Tree Planting and Shade in Heat-Vulnerable Neighborhoods

Prioritize tree planting and shade interventions in locations with higher heat exposure such as public spaces, areas of high pedestrian activity and near residences with POWER and Oberlin College's Green Edge Fund.

13

Restore Plum Creek and Expand Riparian Buffers

Improve water quality and water quality monitoring, reduce flooding, and enhance habitat through restoration of the riparian buffer with native vegetation and control of undesirable invasives.

14

Upgrade Storm Drains and Wastewater Infrastructure in High-Risk Areas

Modernize critical water infrastructure to address increased flooding and reduce risk for vulnerable residents.

15

Reduce Waste at the Source

Support policies, incentives, and practices that minimize waste generation and promote material reuse including food recovery.

16

Expand Composting Access and Improve Recycling Participation

Scale up organics collection, reduce contamination and increase recycling promotion including multilingual outreach.

17

Strengthen Farmer Incubators and Local Food Hubs

Support City Fresh, George Jones Farm, Oberlin Food Hub and training programs that grow the local food economy and help new farmers succeed.

18

Expand Green Workforce Training

Grow local training programs for electrification, heat pump HVAC technology, EV maintenance, solar and battery installation, and energy efficiency careers to help ensure a skilled workforce.

19

Launch Resilience Hubs and Expanded Cooling Centers

Bolster existing cooling centers and establish new centers that are equipped with battery storage or other backup power, cooling resources, charging stations, and emergency supplies for extreme weather events.

20

Enhance Multi-Platform Emergency Alert Systems and Digital Connectivity

Improve emergency communication networks for floods, heatwaves, outages, and storms using text alerts, radio, digital and physical signage, and non-digital plans and resource materials.

Equity is reflected in how Oberlin's highest-priority climate actions are expected to deliver benefits across the community. To provide transparency and support implementation, the City evaluated the Top 20 Priority Projects through an equity lens, identifying priority populations and places, anticipated equity and community benefits, key considerations for equitable implementation, and associated climate outcomes. This cross-cutting analysis is summarized in Appendix B: Equity Considerations Across Top 20 Priority Projects, which complements the strategies and actions described throughout the Climate Action Plan and reflects stakeholder and committee input on addressing disproportionate climate impacts.

LOCAL CLIMATE IMPACTS AND RISK ASSESSMENT

The 2021 Oberlin Climate Vulnerability Assessment (CVA) marked the initial phase of the City's comprehensive climate adaptation work. This Assessment recognizes that while aggressive mitigation through GHG emissions reduction is crucial, substantial climatic change is already occurring and will continue to increase in magnitude and intensity over the next several decades, making preparation and adaptation essential.

The CVA was conducted by the City of Oberlin, the Oberlin Fire Department, and Oberlin College's Environmental Studies Program, involving 53 community members and 15 student coordinators to systematically assess how seven predicted climate hazards would impact seven critical community systems. The assessment summarized community concerns, knowledge, and ideas related to climate risks and opportunities for enhancing resilience. The CVA directly informed the creation of the Climate Adaptation Task Force (CATF) in 2021.

Predicted Climate Hazards and Projected Impacts

The CVA confirmed that Oberlin faces significant local climate impacts, focusing on risks occurring between 2021 and 2030.

Extreme Heat

By 2030, extreme hot days (temperatures exceeding 90°F) are predicted to triple from a historic average of 10 days per year to 30 days per year. This warming is projected to increase cooling energy demand ("cooling degree days") by 37% by 2030.

Extreme Precipitation

The number of days receiving more than one inch of precipitation is expected to increase by 25% by 2030. This increase in frequency and intensity places strain on stormwater infrastructure and increases the risk of flash flooding.

Vector-Borne Disease

Health and safety issues, particularly the risk of vector-borne diseases, were among the greatest concerns identified. Warmer winters allow disease-carrying pests like ticks and mosquitos to survive longer and migrate northward.

Drought

Periods of drought are expected to follow extreme precipitation events. These hotter, drier, and more variable summer conditions pose a risk to local agriculture.

Key Vulnerabilities and Adaptation Insights

Community participants rated their concern regarding the impact of climate hazards on key systems, indicating the highest average concern for the Food system and high concern for Emergency and Health systems.

● Food Supply, Food Access, and Local Agriculture

This system showed the highest overall vulnerability. Changing weather patterns threaten local fruit and vegetable yield, potentially necessitating changes like planting more heat and drought tolerant crops, or investing in irrigation infrastructure. The majority of food consumed in Oberlin is sourced outside the region, leaving the community vulnerable to supply chain disruptions. Collaboration between local farmers and non-profits, like the Oberlin Food Hub, is pivotal for improving storage, distribution, and reducing food waste.

● Health (Public Health, Recreation, and Exercise)

Key risks include heat-related illness linked to extreme heat and the expansion of vector-borne diseases. The emotional or existential distress described as "solastalgia" was also recognized as a mental health impact of climate change. Adaptation requires promoting cooling centers in places like libraries, and other public buildings, enhanced public education on heat risks, and considering subsidies for energy-efficient air conditioning in homes to address equity.

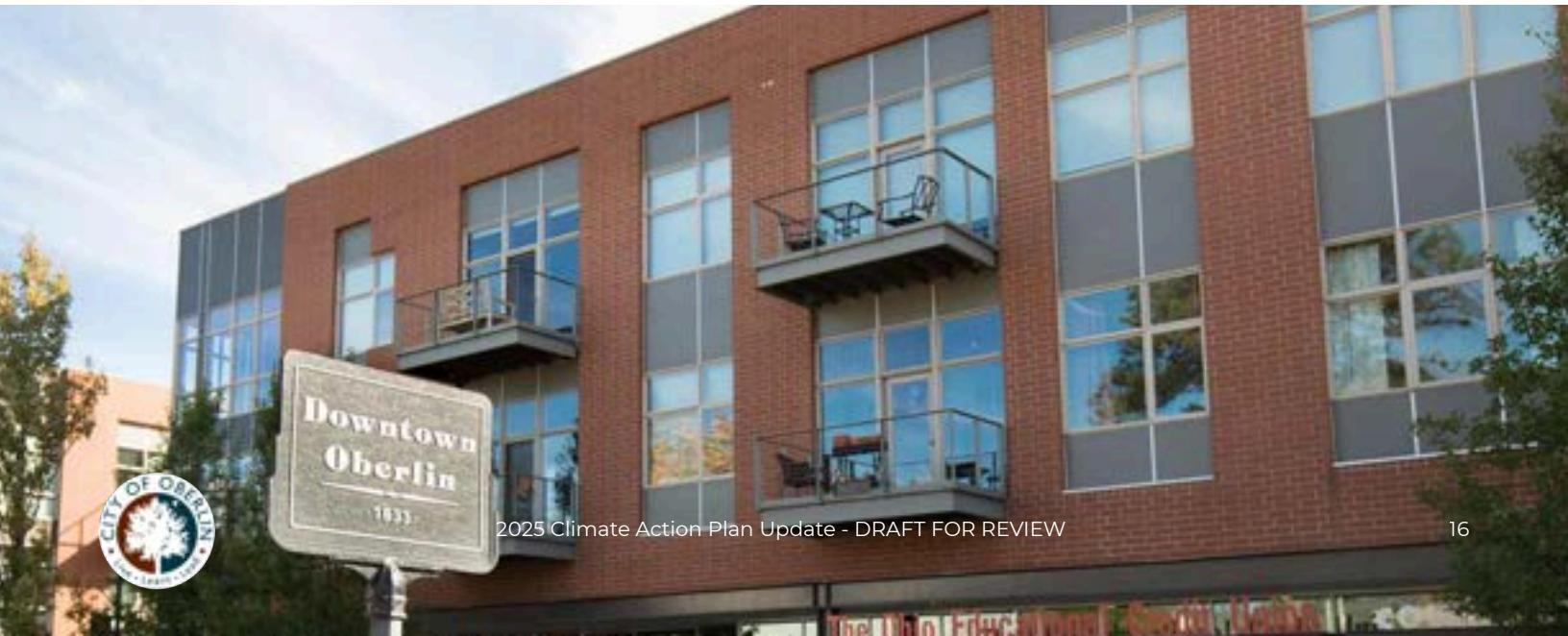
● Emergency Services

Emergency providers must prepare for increased demands from high winds, extreme winter conditions, and flooding. Critical adaptive measures include maintaining and enhancing collaborative communication networks (like the CodeREDemergency notification system) and implementing physical protections like tree trimming and potentially requiring hurricane clips (strong metal fasteners that connect the roof to the walls of a home to prevent the roof from lifting off during high winds) for new construction.

- **Water (Wastewater, Stormwater, and Drinking Water)**

Flooding risks threaten buildings, public spaces, agricultural land, and waterways. Aging infrastructure (which includes, for example areas with century-old clay sewer pipes) is vulnerable to freeze-thaw cycles and infiltration during extreme events. The City possesses high adaptive capacity regarding its drinking water supply due to the Parsons Road Reservoir (holding about a year's supply) and the ability for rapid interconnection with the rural water supply system. Enhancing redundancy and investing in green infrastructure (rain gardens, porous pavement) are key adaptation strategies.

- **Energy (Delivery and Production):**


Climate change is predicted to stress energy distribution networks. Vulnerability exists due to the reliance on a single external power line from First Energy. Increasing local renewable energy production and developing shared battery storage capacity within the local OMLPS grid are seen as crucial for enhancing local self-reliance and managing higher peak demands caused by increasing summer cooling needs.

- **Jobs (Employment, Job Access, and Business)**

Reliable electricity and high-speed internet are essential for business resilience. Extreme weather can impede job access, emphasizing the need for improved public transportation and expanded remote work options.

- **Culture (Community and Culture, including Greenspace)**

Extreme heat threatens summer cultural events and increases utility costs for organizations requiring continuous HVAC (e.g., the Allen Memorial Art Museum to protect art). Participants suggested that Oberlin's geographic location near abundant fresh water may attract climate migrants, providing an opportunity for strategic planning around housing, gentrification, and jobs. Maintaining and enhancing the diversity of greenspaces by planting species adapted to warmer climates (e.g., blackgum, Kentucky coffee tree) is vital for climate adaptation.

Oberlin's 2021 Climate Vulnerability Assessment (CVA) highlights that certain segments of the population are disproportionately susceptible to the impacts of climate hazards, emphasizing those whose underlying vulnerabilities include factors like age, income, or social connectivity.

Specifically, the elderly are identified as highly vulnerable to health risks from extreme heat, particularly those living in older housing stock or lacking affordable access to air conditioning. Economically disadvantaged residents, including low-income families and children, face compounded risks such as housing instability, food insecurity due to disruptions in the food supply chain, and lack of resources to cope with extreme weather.

Outdoor workers require focused support to mitigate risks from rising temperatures, and individuals who live alone or are homebound need community resources like wellness checks during extreme heat events. Recognizing that climate change inherently aggravates and compounds the social inequities already present, the CVA provides the foundation for this Climate Action Plan update, which is committed to incorporating social equity and adaptation goals specifically to address the disproportionate impacts on vulnerable groups in Oberlin.

Oberlin's complete 2021 CVA Report is on the City's website. It contains detailed science-based descriptions of key climate hazards anticipated for the City. It also provides a detailed summary of insights drawn from extensive discussions and interviews with community participants and leaders. A central recommendation is that the City integrate adaptation and resilience goals and strategies into existing planning processes, most notably this 2025 CAP update. Many of the challenges and solutions noted in the CVA are reflected in the strategies, implementation steps and priority projects recommended in this updated Climate Action Plan.

OBERLIN'S CLIMATE ACTION HISTORY

Oberlin has a rich history of leadership in social justice and civil rights, an identity that has re-emerged in the context of the generation-defining challenge of climate change. The City of Oberlin is committed to addressing global climate change by reducing community-wide greenhouse gas (GHG) emissions below zero (climate positive) while balancing environmental, social, and economic interests. The City and Oberlin College have historically worked in parallel and collaboratively to achieve these goals and milestones.

Year(s)	Key Action or Milestone
2001	City Council adopts a Sustainability Resolution. The Adam Joseph Lewis Center (AJLC), a seminal green building, is completed at Oberlin College.
2001	The City joins ICLEI - Local Governments for Sustainability, initiating the process for a GHG inventory and a local Climate Action Plan (CAP).
2010	The City and Oberlin College individually sign Memoranda of Understanding to participate in the Clinton Climate Positive Development Program, committing both parties to reducing GHG emissions below zero.
2011	The first CAP is adopted by the City Council. Oberlin's community wide greenhouse gas reduction goals — 50% by 2015, 75% by 2030, and 100% by 2050 (relative to a 2007 baseline) — were first adopted in the City's 2011 Climate Action Plan following the ICLEI framework.

Year(s)	Key Action or Milestone
2013	The CAP is updated involving stakeholders. The Zero Waste Plan (ZWP), establishing a 90% waste reduction goal by 2050, is created.
2019	The Climate Action Plan is updated again. This update transitioned the City's climate mitigation work into a comprehensive roadmap.
2021	The Climate Vulnerability Assessment (CVA) is completed, providing key findings that extreme heat events will triple and extreme precipitation events will double by 2030, with health and safety issues, vector-borne diseases, and food insecurity identified as the greatest concerns.
2021-2023	The Climate Adaptation Task Force (CATF) is created (October 2021) by the City Council. CATF reviewed community systems in light of CVA data. Key outcomes include opening cooling centers for the first time and further coordination on urban tree canopy management between the College, City, and Kendal.
2024	The CAP update process commences, explicitly including social equity and adaptation/resilience goals. The Comprehensive Plan is adopted by the City Council (February 2024), which includes goals for promoting environmental sustainability and resilience.

OBERLIN'S CLIMATE PROGRESS

Oberlin has made meaningful progress since the adoption of its most recent Climate Action Plan update in 2019. Across all sectors, the community has taken steps that have reduced emissions, improved efficiency, enhanced natural systems, and strengthened local infrastructure. This progress demonstrates what is possible when the government, residents, businesses, and institutions collaborate toward a shared mission.

Accomplishment Highlights

Oberlin Municipal Light & Power System (OMLPS) has transitioned to 100% renewable electricity, significantly reducing community-wide emissions and positioning Oberlin as a national model for municipal utilities. OMLPS achieved a fully carbon-neutral, 100% renewable electricity supply beginning in 2020, finalizing the transition in 2021 through the purchase of Green-e certified renewable energy credits (RECs) to offset the remaining fossil-fuel portion of its power mix.

This community-wide renewable supply applies to all OMLPS customers - residential, commercial, industrial, and municipal - meaning households, local businesses, and city facilities all receive electricity generated from renewable or carbon-neutral sources. This shift significantly reduced Oberlin's community-wide emissions and has positioned the city as a national leader among municipal utilities for clean energy innovation.

Energy efficiency programs have expanded, with POWER (Providing Oberlin With Efficiency Responsibly) and other partners helping residents reduce energy use and utility costs. Energy efficiency programs have expanded across Oberlin in the past few years, with POWER providing community-wide Energy Advocate services and financial support for low-income households. The City also added local Super Rebates and All-Electric Home Weatherization Rebates that supplement Efficiency Smart's regional offerings. Efficiency Smart continued to offer rebates for efficient appliances, HVAC, and smart thermostats along with Oberlin-only bonus incentives for residents and small businesses while businesses benefited from dedicated technical assistance and LED incentive programs. These programs together increased access to energy audits, weatherization, and high-efficiency equipment across homes, nonprofits, and small businesses.

Sidewalk and bike path improvements have been made as the City has invested in improving connectivity and creating safer options for walking and biking. Since 2021, Oberlin has adopted an Active Transportation Plan and strengthened its sidewalk inspection program; filled a major sidewalk gap with the South Main–East Hamilton Sidewalk Infill Project (2022); advanced design of a new multi-use path along SR-58 South to connect neighborhoods with the US-20 retail corridor; upgraded safety markings at the Don J. Pease Memorial Bike Path crossing; and launched a Park & East Vine streets resurfacing project that adds ADA ramps, crosswalks, and bike sharrows (shared land markings) to complete key active-transportation improvements. These efforts enhance active-transportation connectivity and safety across the community.

Composting participation has grown, supported by curbside compost collection and community education. Expanded composting diverted 142.8 tons of food scraps from the landfill, avoiding 51.2 metric tons of CO₂e emissions. Residents now have access to a comprehensive residential food-waste composting program in partnership with Barnes Nursery, offering free drop-off and a fee-based curbside service. In parallel, community organizations such as Oberlin Community Services have rescued and composted tens of thousands of pounds of food and produce since 2020, and Oberlin College launched a campus-wide post-consumer food-waste composting program in 2023. The Kendal at Oberlin life-plan community has likewise integrated food-waste collection into its operations and committed to expanded organics diversion as part of its strategic sustainability goals. The City's yard-waste/leaf-waste collection is routed through a Class IV compost facility and made available through monthly leaf-compost/wood-chip giveaways—reinforcing both diversion and reuse of organic materials. Together, these initiatives demonstrate meaningful expansion of composting and organics diversion across residences, institutions, and businesses.

The community has strengthened the local food system, supporting farmers, gardeners, and food-access programs. The community has strengthened its local food system, anchored by the Oberlin Food Hub, which now works with a network of 25 Ohio farmers. The Ohio CAN Farm-to-Food Bank program has helped deliver over 4.2 million pounds of farm-fresh food while investing more than \$700,000 in advance payments to small farms across the region. At the neighborhood scale, Oberlin Community Services' People's Garden, Build-a-Garden home-garden campaign, free seed giveaways, and the Little Sprouts children's gardening camp are expanding gardening and food skills for residents, while the Legion Field Community Garden and its 2022–2023 campaign to support 25 new household gardens deepen local food production and donations to the food pantry. The Oberlin Farmers Market, operating each season downtown, continues to provide a direct outlet for local farmers, gardeners, and food producers, connecting residents to fresh, locally grown food.

Tree planting campaigns, pollinator habitat programs, and natural resource protection efforts have improved ecological health and urban canopy. Since 2020, Oberlin has strengthened its urban forest and habitat. In 2021, the City's Public Works Department planted 86 new street and park trees representing 23 species through an Urban Forestry Initiative. Council also adopted a "Managed Natural Landscapes" ordinance that explicitly promotes native and pollinator-supporting plantings, backed by City-funded projects like the Oberlin Heritage Center's educational pollinator garden and public workshops that provide residents with free native pollinator plants. These local efforts complement larger-scale habitat protection and prairie restoration at the 63-acre Oberlin Preserve and the community's Monarch City USA designation, collectively improving ecological health and supporting Oberlin's urban canopy.

Completion of Oberlin College and Conservatory's Sustainable Infrastructure Project and Achieving its Goal of Carbon Neutrality by 2025 has contributed significantly to community-wide goals. In 2025, the College and Conservatory fully transitioned from principal reliance on natural gas to an electricity powered geothermal system.

This was combined with a vastly more efficient district heating and cooling system and building renovations that significantly increased the energy efficiency of College buildings. The addition of cooling to many campus buildings enhanced adaptation to a warmer climate. The City and College engaged in a deep level of collaboration that enabled a model carbon-free district system with opportunities to expand into community buildings and replicate elsewhere.

Solar installations have increased significantly, including large-scale and rooftop systems on homes, public buildings, and institutions. Residential and commercial rooftop permit systems are supported by the municipal utility's interconnection process. Installed in 2012, Oberlin College and Conservatory's 2.27 MW solar array remains the largest installation. However, residential and commercial installations have grown significantly since the last Climate Action Plan update.

Not including Oberlin campus array, installed commercial solar capacity within OMLPS service area expanded from 198 kW to 830 between 2020 and 2025 -- a 320% increase in just 5 years. As one example of the collaborations involved, the City of Oberlin, the Oberlin School District and the Green Edge Fund made significant financial investments to support a 268 kW solar array at Oberlin Elementary.

The array was completed in 2024 and now offsets about 80% of the school's annual electricity use. Real-time data from this array is prominently displayed on interactive digital signs in each school and throughout the community.

Residential solar has also increased substantially in large part as a result of the two solar buying groups ("Solar Switch" and "Switch together") were organized by Solar United, supported by the City of Oberlin and heavily promoted through the "Later is too late" publicity campaign. Installed residential solar capacity within OMLPS service area expanded from 193 kW to 445 between 2020 and 2025 -- a 131% increase in just 5 years.

Climate communication initiatives have enhanced awareness and participation in electrification, efficiency, solarization, and alternative transportation programs and have promoted cooling centers and air quality mitigation. The “Later is too Late” campaign and community-wide Ecolympics programming have expanded the number and diversity of community residents who are aware of, understand and are taking advantage of CAP related opportunities. The “Later is Too Late - Take Action Now! Be Efficient - Go Electric - Go Solar in Oberlin” campaign was a collaboration among the City’s Sustainability Center, Community Hub, POWER, Efficiency Smart, Lorain County Citizen’s Climate Lobby, and Solar United. A sample of the promotional campaign is on the following page.

With a contract through the City of Oberlin’s SRF fund, Community Hub developed a brochure with simple explanations of the constellation of opportunities and actions available to renters and homeowners to address climate change, improve comfort and health and save money through local and national incentive programs.

Brochures were sent to every OMLPS customer and distributed at a host of community events including a community-wide “Later is too late” Ecolympics kickoff events held at Oberlin Elementary in 2024 and 2025. The seven CAP-focused areas emphasized in the campaign included home weatherization, upgrades to energy efficient appliances, HVAC upgrades, rooftop solar, home wiring upgrades, low carbon transportation options and community engagement opportunities. Corresponding digital sign content was run in heavy rotation on the 23 Community Dashboard screens installed throughout the community.

In addition to promoting efficiency and mitigation options, the 23 Community Dashboard screens have been used to selectively promote the available hours of Oberlin’s new cooling centers when extreme heat events have been predicted and to promote health preserving responses whenever negative air quality conditions have been predicted.

The 2024 and 2025 Ecolympics competitions expanded to engage the entire community. Community dashboard technology was used to support four concurrent competitions held for Oberlin City Schools, Oberlin community buildings (Oberlin Public Library, the Fire Station, the Oberlin Enrichment and Activity Center) and Oberlin College residence halls and Oberlin College offices. In 2025, organizations directly participating in the two week competition in 2025 achieved verified community-wide savings of 32,000 kWh electricity and 26,000 gallons water.

A host of public CAP-related events including various lectures, films, art performances were held throughout the period. Community kickoff events in both years recruited solar providers, Heat-pump installers and energy efficiency providers and, although held at the schools, attracted broad participation for community members interested in learning more about these options.

TAKE ACTION NOW! LATER IS TOO LATE

CONTACT PARTNERS BELOW FOR ASSISTANCE ON ACTION OPPORTUNITIES!

City of Oberlin Center for Sustainability
Linda Arbogast, Larbogast@cityofoberlin.com
www.cityofoberlin.com/city-government/departments/sustainability

POWER
Greg Jones, ggregpoweroberlin.org, 440-935-0995
www.poweroberlin.org

Efficiency Smart
Bob Golden, rgolden@efficiencysmart.org, 614-468-4904
www.efficiencysmart.org/oberlin-ohio

Rewiring America/
Inflation Reduction Act (IRA)
hello.rewiringamerica.org
www.rewiringamerica.org/calculator

Solar United Neighbors
info@solarunitedneighbors.org, 202-888-3601
www.solarunitedneighbors.org/ohio
Rooftop buying group:
www.solarswitch.com/Oberlin

Lorain County Citizens' Climate Lobby
loraincounty.ohacitizensclimatelobby.org
citizensclimatelobby.org/chapters/OH_Lorain_County

Environmental Dashboard
dashboardoberlin.edu
www.environmentaldashboard.org

BE EFFICIENT, GO ELECTRIC AND GO SOLAR IN OBERLIN!

Learn how you can save money
and make your home more
comfortable and healthier
while doing your part to
build a more climate-
resilient future

Oberlin is a leader in climate action. The City has partnered with local organizations to provide residents with recommendations for actions you can take in your home. Both renters and homeowners can take advantage of the local and national programs and incentives described here.

LATER IS TOO LATE

Climate education has been significantly enhanced in the City schools and through digital signs installed throughout the community. In 2020 the City provided five years of support to use the Environmental/Community Dashboard as a communication and engagement vehicle to promote climate action and resilience. A variety of content, including a simplified explanation of the climate action plan and climate action updates, were developed for display on the 23 Community Dashboard screens and web-embedded content on the City website. The screens reach diverse audiences with installations in locations including: the Public Library, Oberlin Community Services, City Hall, the Oberlin Enrichment and Activity Center, many store fronts and other locations that reach the broad diversity of Oberlin residents.

Oberlin City Schools have become a critical hub for this communication. In 2022 the community dashboard team received a \$50,000 grant from the Ohio EPA to develop an ultra-high resolution dashboard metering and display system for the new elementary school that displays solar production and submeter electricity and water used for different end-uses such as mechanical, lighting, cafeteria, and classroom groups electric car charging stations, etc. Every student in the elementary school now experiences lessons focused on data interpretation and conservation. The technology has resulted in innovative, authentic, and community-engaged learning experiences within and beyond STEM classes in K-12 grades.

In 2025 the Dashboard team collaborated with Oberlin Public schools to apply for and receive two grants from the Green Edge Fund; \$150,000 to upgrade the HVAC system in the new Middle School from purely natural gas to a hybrid heat pump system and \$24,000 to develop a new Dashboard system for this school that will enable this building to serve as a living laboratory for studying energy and water conservation and as a model for commercial-scale heat-pump use in the community.

The City of Oberlin was selected to participate in the Youth Climate Action fund (YCAF) program supported by Bloomberg Philanthropies. In phase 1 of YCAF the City of Oberlin was one of 100 cities around the globe to receive \$50,000 in initial funding and technical assistance to support youth-driven climate action. We awarded eight project grants that engaged over 200 young people around Lorain County.

In phase 2 we were able to double our impact through a grant of \$100,000. We funded 18 projects throughout the county and engaged hundreds of youth in projects such as building pollinator gardens to expand biodiversity, finding creative ways to reuse waste from the landfill for community art as well as study the pervasiveness and the impact of microplastics in our environment. Our goal in becoming a YCAF city is to offer communities throughout Lorain County the opportunity to deepen collaboration, support more impactful projects, and inspire the next generation of local youth leaders.

GREENHOUSE GAS EMISSIONS INVENTORY

This Greenhouse Gas (GHG) Emissions Inventory serves as the foundational technical document for the City of Oberlin's 2025 Climate Action Plan Update, establishing a clear understanding of local emission sources. This section details the methodology, scope, and key findings of the City of Oberlin's most recent community-wide inventory.

Measurement and Methodology

The City of Oberlin's inventory reflects data for the 2024 calendar year, representing an update to the data previously assessed in the 2019 Climate Action Plan^[1]. This inventory was completed using ICLEI's new ClearPath 2.0^[2] tool, which is based on the widely accepted Global Protocol for Community-Scale Greenhouse Gas Emission Inventories (GPC).^[3] The GPC Protocol provides a transparent and standardized framework for cities across the globe to measure their greenhouse gases. By using the internationally recognized methodology, the City ensures its emissions data is comparable to other leading climate-action communities in the region and accurately reflects its carbon footprint.

The Oberlin Advantage: Zero-Carbon Electricity

The inventory captures all relevant emissions within the city's geographic boundary, categorized into key sectors:

Buildings (Stationary Energy)

Emissions resulting from heating and powering residential and commercial structures. The City's electricity use generates zero emissions. This is a significant community achievement, as the Oberlin Municipal Light and Power System (OMLPS) sources its power from climate neutral energy and fully offsets the remainder with Renewable Energy Certificates. Consequently, most building emissions are derived solely from the combustion of natural gas for space heating, water heating, and cooking.

Transportation (Mobile Energy)

Emissions from the consumption of gasoline and diesel by vehicles traveling on city roads.

Waste and Wastewater

Emissions (primarily methane (CH₄) and nitrous oxide (N₂O)) generated from the decomposition of municipal solid waste in landfills and the treatment of wastewater.

Electricity Emissions, RECs Use and Oberlin's Commitment for a Clean Grid

Oberlin is committed to providing all residents 100% carbon neutral electricity - **now and in the future**. The City has contracts to get its power from clean sources including hydroelectric, solar, wind and landfill gas. While Oberlin Municipal Light and Power System (OMLPS) generates some of its own power, it also buys a large part of its supply from American Municipal Power (AMP).

According to AMP's 2024 Sustainability Report for Oberlin, about 72% of Oberlin's electricity already comes from local climate neutral sources. The remaining 27.5% is supplied from the general market, which is not guaranteed to be clean. To make sure that remaining 27.5% is also emissions-free, the City purchases Renewable Energy Certificates (RECs). By doing this, Oberlin is able to officially state that all of the City's electricity is 100% renewable.^[1] The City will continue negotiating long-term contracts to ensure 100% renewable energy for its residents and businesses in the future.

The inclusion of landfilled gas as a "renewable" source for accounting purposes aligns with AMP's Energy Sustainability Reports. While landfilled gas is not technically considered renewable, it is often classified as carbon neutral because it utilizes methane that would otherwise be released into the atmosphere. The City includes this waste-based energy source as renewable to acknowledge these specific recovery efforts and their associated environmental benefits. See Appendix B, Section 1: "Electricity Supply and RECs" for more details.

^[1] <https://cityofoberlin.com/wp-content/uploads/2019/09/2019-Climate-Action-Plan-Update.pdf>

^[2] <https://icleusa.org/clearpath-2/>

^[3] https://ghgprotocol.org/sites/default/files/ghgp/standards/GHGP_GPC_0.pdf

Inventory Results: A 69% Reduction Milestone

The 2024 inventory quantified the total community-wide greenhouse gas emissions to be 53,818 metric tons of carbon dioxide equivalent (MTCO2e). This total represents a significant **69% decrease** compared to the 2007 baseline levels. This impressive progress places the city firmly on track to achieve its ambitious goal of cutting emissions by 75% by 2030.^[1]

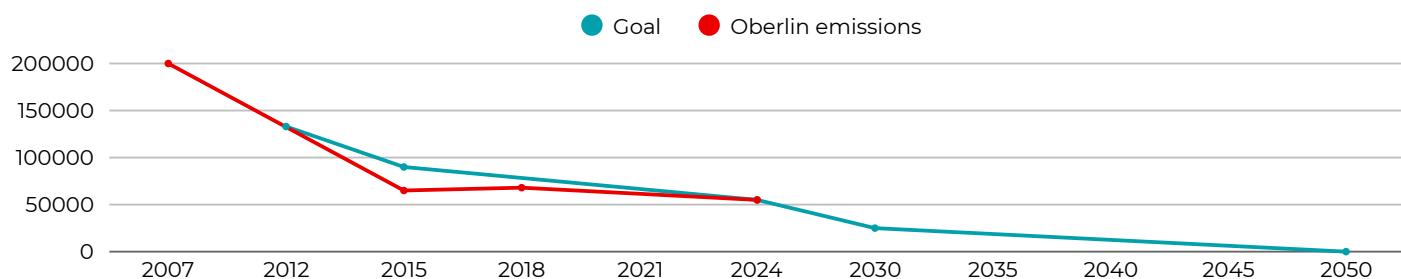


Figure 1: Oberlin Emissions Trend

Emissions Reductions Achieved

Oberlin's emissions have declined significantly since the baseline year, largely due to:

Renewable electricity supply and fuel switching

Energy efficiency in buildings

Waste reduction

Sustainable transportation choices by residents

While progress is meaningful, buildings and transportation continue to make up the largest share of remaining emissions, making these two central focus areas of this plan update.

Identifying the Emissions Hotspots

With the electricity sector largely decarbonized, the inventory clearly identifies **Natural Gas Use in Buildings** as the primary focus area for future action.

- **Commercial Buildings** are the single largest source, representing 51% of total emissions.
- **Residential Homes** and **On-Road Transportation** follow closely, each contributing approximately 18% of the total footprint.
- The remaining small percentage of emissions is attributed to Solid Waste, Wastewater Treatment, and natural gas distribution system leaks.

For more information about the GHG Emissions Inventory, please see Appendix C.

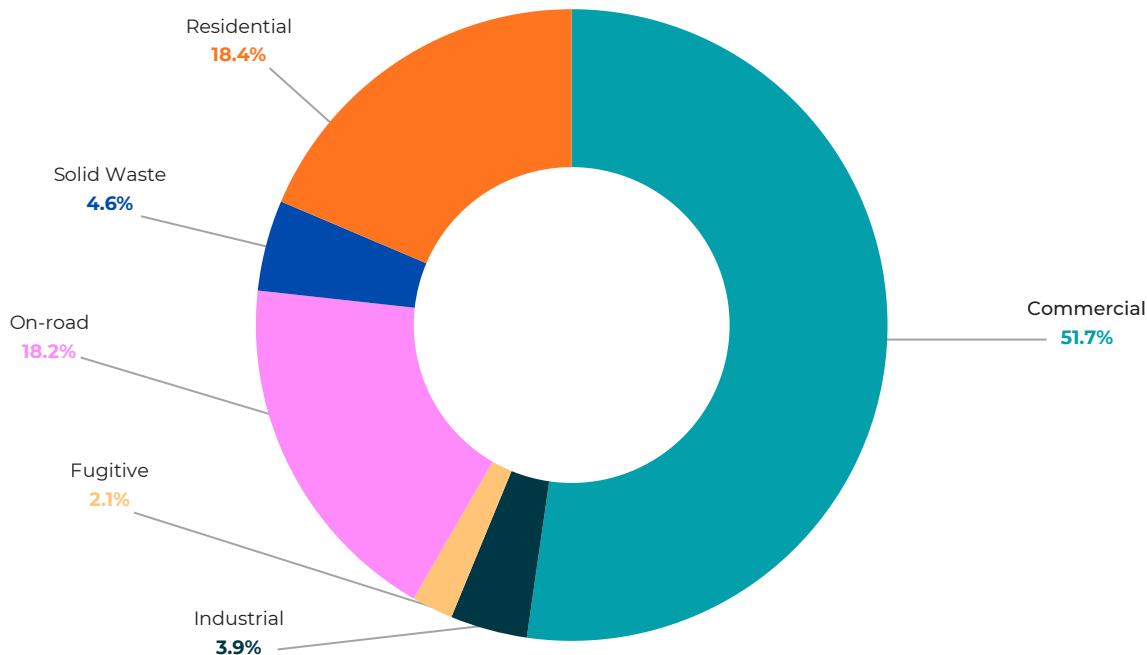
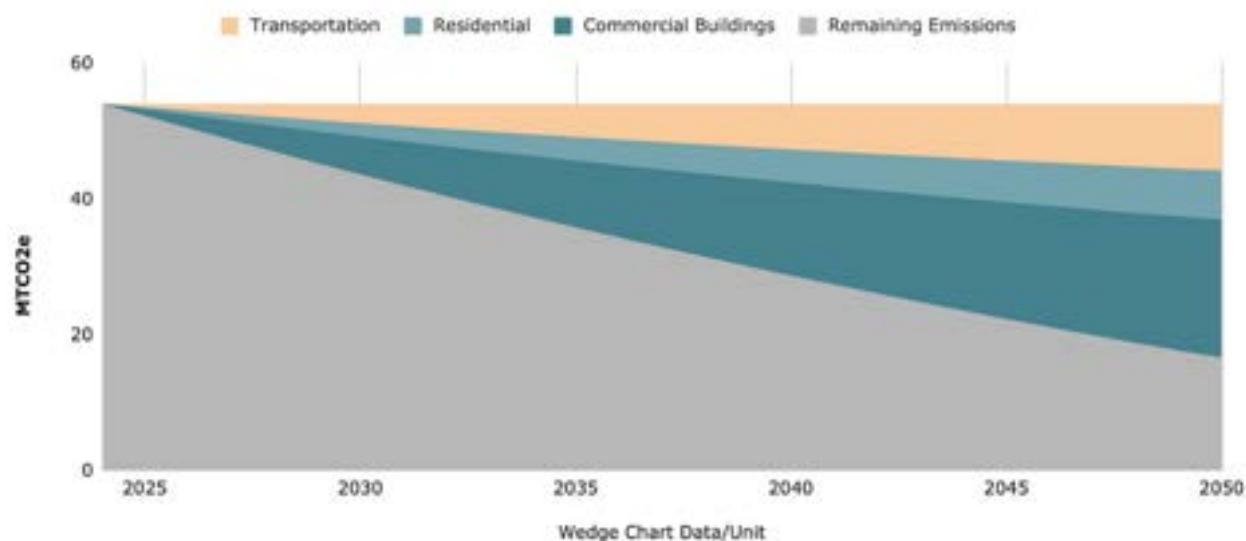


Figure 2: Oberlin Emissions by Sector for 2024

Community-Wide Climate Goals

The 2025 Climate Action Plan Update affirms existing commitments and sets updated community goals that align with the latest climate science and local priorities:


- **Become a Climate Positive Community by 2050**, with interim goals aligned with science-based pathways.
- **Reduce community-wide emissions 75% by 2030**, relative to 2007.
- **Deepen investments in climate resilience**, especially in flood-prone and heat-vulnerable neighborhoods.
- **Advance electrification** of buildings, vehicles, and infrastructure.
- **Support a just transition** through affordable, accessible programs that prioritize those most affected by costs and impacts and benefit all residents.

These goals now codify the twin strategies of mitigating climate change through reducing greenhouse gas emissions while increasing adaptation and resilience in recognition of a rapidly changing climate. We must prepare for impacts already affecting Oberlin, including more intense storm events, increased air pollution, extreme heat, and ecosystem changes.

The Path Forward: Decarbonizing Heating and Cooling

Since Oberlin's electricity supply is currently decarbonized and the City has committed to ensuring it remains so, transitioning away from natural gas presents the most significant - and necessary - opportunity for further climate action. The chart below shows how each key sector can continue reducing emissions to 2050. By implementing the Climate Action Plan Pathway, emissions could be reduced 90% by 2050 compared to 2007 baseline limits.

Emissions from the residential and commercial sectors are primarily caused by the combustion of natural gas. This process releases carbon dioxide (CO₂), the primary driver of climate change, as well as other indoor and outdoor pollutants such as particulates and nitrous oxide that contribute to smog and can negatively affect human health. Because the community's electricity supply is essentially carbon neutral today due to its high reliance on renewables, landfill gas and REC's, switching from natural gas systems to electric alternatives such as heat pumps is a necessary solution for achieving the community's carbon positive goals.

This transition has multiple benefits. It contributes to the city's goal of eliminating climate pollution. It eliminates harmful indoor and outdoor air pollutants, leading to healthier homes and workplaces for residents. Transition from gas boilers to heat pump technology provides a single solution for providing cooling as well as heating - thereby contributing to community adaptation. The inventory provides the critical data necessary to prioritize mitigation efforts, ensuring that the community addresses the biggest sources of pollution while integrating essential considerations such as health co-benefits, equity, and economic feasibility into the remainder of the Climate Action Plan.

For more detailed information on the greenhouse gas forecast, please refer to Appendix B, Section 2.

CLIMATE VISION & EQUITY COMMITMENT

Oberlin has a rich history of leadership in social justice and civil rights, an identity that has re-emerged in the context of the generation-defining challenge of climate change.

The City of Oberlin is committed to addressing global climate change by reducing community-wide greenhouse gas (GHG) emissions below zero (climate positive) while balancing environmental, social, and economic interests. The City and Oberlin College have historically worked in parallel and collaboratively to achieve these goals and milestones.

Oberlin's Climate Vision

Oberlin envisions a future where all residents thrive in a community powered by clean energy, supported by a resilient environment, and shaped by equitable and inclusive decision-making. In this future, buildings are efficient and healthy, transportation is safe and accessible for all users, natural systems are protected and restored, and local economic development aligns with sustainability principles. Pursuing local climate action has been and continues to be a core part of Oberlin's identity with a shared commitment that strengthens community wellbeing and supports a just and prosperous future.

A Commitment to Equity and Inclusion

The updated Climate Action Plan embeds equity at every stage. During engagement, residents emphasized that climate solutions must benefit everyone, especially those who are disproportionately impacted and have fewer resources to adapt to changes underway. This plan reflects that guidance by prioritizing:

Affordability

Ensuring energy costs, transportation options, and housing remain accessible.

Health and wellbeing

Reducing exposure to heat, pollution, disease organisms, mold, and flooding.

Accessibility

Offering programs, incentives, and information that are easy to understand and navigate.

Representation

Engaging diverse voices such as youth, renters, elders, low-income households, and culturally diverse members of the Oberlin community.

Local benefit

Ensuring jobs, investments, and savings stay within the community.

Equity is not a separate chapter of this plan, it is woven throughout all strategies, actions, and implementation decisions.

Stakeholder Equity Insights

The revision of the Climate Action Plan (CAP) intentionally incorporated social equity throughout the planning process, making it a central focus during stakeholder interviews as well as in the community workshop. Stakeholders were explicitly asked how to address social equity and advance the needs of vulnerable populations in the updated plan.

The feedback gathered highlighted several key themes and concrete responses concerning equity and climate action:

1. Disproportionate Impacts and Vulnerable Populations

A primary theme was that low-income populations and marginalized communities are expected to bear the brunt of climate change impacts.

- **Vulnerable Groups:** Populations identified as most vulnerable include seniors, people with disabilities, low-income households, youth, veterans, minority-owned businesses and those residing in older housing or neighborhoods vulnerable to heat, flooding, and outages.
- **Geographical and Environmental Exposure:** Stakeholders noted exposure to flooding caused by soil wetness and precipitation patterns. While these conditions affect the city broadly, differences in land use, impervious surfaces, stormwater infrastructure, and green infrastructure can influence how heat and flooding impacts are experienced across the city.
- **Health and Financial Stress:** Stakeholders noted that vulnerable residents face energy insecurity, paying more of their income on energy, have greater exposure to extreme heat and power outages, often having to choose between buying food and paying utilities.

2. Addressing Financial and Housing Barriers

Financial constraints, particularly high upfront costs, were consistently cited as the major barrier preventing vulnerable populations from adopting sustainable solutions.

- **Energy Efficiency and Electrification:** There is a need for resources to help low-income residents afford energy upgrades.

- **High Upfront Costs:** Installing heat pumps can cost \$10,000 to \$15,000, and many older homes require electrical panel upgrades costing \$3,000 to \$4,000 to support new electric appliances. Rebates alone are often insufficient.
- **POWER Model:** The nonprofit POWER was highlighted for addressing housing service gaps and providing a stratified funding system where households below the poverty line receive 100% cost coverage for energy efficiency upgrades.
- **Proposed Funding Solutions:** Suggestions included using Sustainable Reserve Fund (SRF) money for targeted equity projects, implementing income-adjusted utility rates, and offering specific discounts or rebates for electrical panel upgrades tied to heat pump installations.
- **Renter Challenges:** Renters have challenges accessing incentives and upgrades (e.g., EV chargers, efficiency programs). Stakeholders recommended focusing on strategies to engage commercial landlords through incentives, roundtable discussions, and clear value propositions, as tenants often do not own their buildings.
- **Affordable Housing:** Advocating for affordable housing was seen as crucial, especially affordable housing built to sustainable standards, such as the Community Land Trust commitment to all-electric homes. Policies should also protect and invest in legacy Black homeowners to prevent displacement.

3. Food Access and Resilience

Food quantity, quality, and affordability were top priorities, driven by concerns over climate impacts on local growing and the supply chain.

- **Local Food Systems:** Recommendations included providing financial and policy support to local farmers markets (e.g., offsetting costs like insurance), supporting the expansion of community gardens and local food growing spaces in residential areas, and promoting urban farming to strengthen food access.
- **Food Distribution:** Stakeholders urged the expansion of nutrition incentive programs, enhancing food recovery programs, and connecting surplus farm produce or meat production (like 4-H) with local food pantries to support low-income access.

4. Inclusive Community Engagement and Outreach

A key theme was ensuring that existing strategies effectively engage marginalized residents, and requests for more, trusted outreach. Stakeholders stressed the importance of asking affected residents directly about their needs and solutions rather than assuming them.

- **Outreach Methods:** Recommended engagement strategies included:
 - Direct, personal outreach and one-on-one invitations.
 - Informal, conversational engagement (e.g., during food distributions at Oberlin Community Services).
 - Using culturally relevant, accessible channels like home gatherings or targeted small-group sessions.
- **Policy Empowerment:** It was recommended that the social equity coordinator be given greater policy authority to ensure other city departments operationalize equity goals.

5. Equity in Transportation and Waste Management

Stakeholders offered additional ideas for making essential services more equitable through policy and resource distribution.

- **Transportation Access:** The accessible electric buses with ramps were praised as an inclusive climate solution. However, there remains an urgent need for regional transportation access (e.g., shuttles to civic events or for medical care outside the city) to support low-income and elderly residents. Infrastructure focus should include active transportation (walking, biking) to protect those who rely on it.

The overall sentiment is that successful climate action must be inclusive and community-based, recognizing that the community is only as strong and resilient as its most vulnerable members.

COMMUNITY OUTREACH & ENGAGEMENT

Community voices shaped every stage of the 2025 Climate Action Plan Update. Guided by Oberlin's long tradition of civic participation and collaborative problem-solving, the planning process brought together residents, students, educators, City staff, business owners, farmers, nonprofit leaders, and institutional partners to imagine how Oberlin can move toward a more sustainable, resilient, and equitable future.

Through interviews, workshops, and conversations across sectors, participants shared their experiences, aspirations, and concerns about how climate change is affecting daily life and what solutions will best serve the community. This engagement ensured that the updated plan reflects perspectives from Oberlin's diverse community and centers the needs of those most impacted by climate and the economic challenges of adaptation. What follows is a summary of the interviews and workshops that helped guide the plan's strategies, priorities, and actions.

Stakeholder Interviews

The Climate Action Plan Update stakeholder interviews were conducted by members of the Oberlin Climate Action Plan (CAP) Task Force and Steering Committee, including City staff such as the Sustainability Coordinator, faculty, and elected officials. The interviews targeted a diverse group of community members, including business owners, nonprofit leaders, farmers, students, educators, public works staff, and institutional representatives from organizations like Oberlin College, Kendal at Oberlin, and POWER. The primary objective was to gather community input and expert insights to inform the updated CAP, which defines a path forward to achieve the established goal of a 75% emissions reduction by 2030 (established in 2011) and explicitly incorporates climate adaptation/resilience and social equity. These discussions, often guided by a common set of questions tailored to a specific sector (such as waste, food, energy, education and communication, and transportation), were recorded to capture actionable ideas for programs, policies, and projects.

A few pervasive themes emerged from these conversations, highlighting urgent community needs and strategic opportunities. Electrification, specifically reducing natural gas consumption in buildings, was repeatedly cited as a top priority for achieving necessary emissions reductions. However, this transition poses major barriers, including the high upfront cost of heat pump installation (with one quote noted at \$16,000 for a small apartment), the need for electrical panel upgrades (often costing between \$3,000 and \$4,200), and a shortage of locally trained electricians and HVAC technicians familiar and able to make the best recommendations regarding these new systems.

Stakeholders also heavily emphasized social equity and community resilience, including the need for strong, consistent financial incentives such as rebates to help low-income residents afford upgrades. Stakeholders also emphasized the importance of supporting local food systems and urban farming to address high food insecurity, which is identified as a top climate vulnerability. Many stakeholders also stressed the importance of targeted, culturally relevant outreach to engage residents who may feel excluded from traditional planning processes. The update process for the Oberlin Climate Action Plan (CAP) also involved three widely and broadly promoted and attended workshops to gather comprehensive community and institutional feedback: the City Staff Visioning and Strategy Workshop and two Public Community Workshops.

City Staff Workshop

The City Staff Visioning and Strategy Workshop was held on September 25, 2025, at the Oberlin Enrichment and Activity Center, hosting 18 attendees from various City Departments and City Council members, including the new City Manager Greg Holcomb. The workshop began with presentations on Oberlin's climate progress and GHG inventory led by Sustainability Coordinator Linda Arbogast and was followed by a municipal-focused discussion where staff explored how their work connects to CAP goals, challenges they face, and support needed for integration. Key strategies prioritized by staff included addressing waste reduction at the source (10 votes), continuing to promote active transportation (9 votes), and protecting local water resources (7 votes). Discussion topics also included expanded EV charging for large equipment, support for microgrids, battery storage, and improving the alignment between sustainability, equity, and economic development.

Community Workshops

Oberlin's first community workshop was held early in the CAP planning process on October 30, 2024 at Oberlin Public Library and was attended by 54 members of the public, 9 volunteers and 9 committee members. Titled "Trick or Treat for the Climate!," the workshop was structured to maximize meaningful community input on a wide range of sustainability issues. The workshop utilized topic tables to gather visions and ideas for Oberlin's future across eight major themes: Energy, Water, Economy, Food, Waste, Education, Transportation, and Land Use & Housing. The overarching goal was to understand the world Oberlin residents want to live in and collect key steps for achieving that vision, focusing on both carbon reduction and climate adaptation.

Key priorities discussed across these areas centered on enhancing climate resilience, equity, and sustainable infrastructure. In terms of resilience, participants prioritized upgrading systems to handle extreme weather, specifically focusing on storm water management (through rain barrels and other methods) and ensuring the security and reliability of the energy system. To achieve decarbonization, priorities included increasing the use of renewable energy (solar, wind, geothermal) and accelerating the transition to all-electric infrastructure.

Issues of equity were highlighted through calls for subsidized affordable housing, making energy adaptation costs accessible via a sliding scale, and ensuring reliable, accessible public transit. Other major themes included expanding composting and recycling capabilities, strengthening local food production and food security, and integrating environmental literacy and targeted trade skills into community and school education programs.

Community Workshops

The second Public Workshop was held nearly a year after the first, on October 8, 2025, at the Oberlin Public Library, focused on providing participants with the opportunity to explore a climate positive future following a formal presentation of some of the ideas already generated through the first workshop and through interviews with stakeholders. The second workshop attracted 62 attendees, including Oberlin community members, Oberlin College students, City staff, and CAP Update Committee members. This event was similar to the first in that it featured a Blue Sky Visioning Exercise where attendees imagined climate actions without financial or political barriers, and a Poster Session where they voted on draft strategies. Themes that defined successful climate action in the introductions included "ongoing resilience," "community together," and being "carbon neutral" and "innovative". When envisioning a thriving future, participants highlighted a self-sustaining local economy with circular production systems, strong local commerce, and an emphasis on equity and access, ensuring sustainability "works for everyone" regardless of wealth.

Several cross-cutting themes emerged from the three workshops, demonstrating widespread community consensus on key priorities. The dominant priority in the voting session at the second public workshop was addressing waste reduction at the source, expanding reuse/repurpose opportunities, and reducing disposable use (26 votes), a priority also echoed by City staff. In the energy sector, while staff focused on immediate city electrification, the public envisioned bold steps like solar on every roof, community solar gardens, residential microgrids, and a full transition away from natural gas toward electrification. To increase food security, both groups strongly supported strengthening local food systems by expanding gardens, local farms, urban homesteading, and farmers markets (7 votes from staff, 17 votes from public). Finally, transportation goals focused heavily on expanding public transit and increasing shared mobility, alongside visions for widening sidewalks, creating safer bike lanes, and ultimately achieving "more bikes than cars" in Oberlin. The community also emphasized that Oberlin's history of social and climate justice should be central to its identity and continued leadership.

CLIMATE ACTION STRATEGIES

The Climate Action Plan organizes Oberlin's path forward across nine sectors—Energy; Transportation; Housing & Buildings; Land Use & Trees; Water & Stormwater; Waste & Materials; Food Systems; Local Economy & Workforce; and Education & Engagement—each with a clear goal that reflects the community's vision for a healthier, more resilient future.

Within each sector, the plan outlines core strategies, specific actions, and detailed implementing steps that provide a practical roadmap for reducing emissions, strengthening resilience, and advancing the plan's key themes of equity, affordability, public health, engagement and community well-being. For residents, this means cleaner air, safer streets, more efficient homes, stronger local businesses, and neighborhoods better prepared for extreme heat and flooding.

To support effective and timely progress, the plan also identifies five-year priority actions that focus early implementation on the most impactful, achievable, and community-supported initiatives, ensuring that Oberlin continues to build a future where all residents can thrive.

Equity is a core principle of this Climate Action Plan. Each strategy is evaluated for its potential to reduce burdens, increase benefits, and close historical racial and socioeconomic gaps in the City of Oberlin. This plan prioritizes investments that support residents facing the highest energy burdens, climate risks, housing instability, and economic barriers.

ENERGY

Goal

Accelerate Oberlin's transition to clean, affordable energy through electrification, enhanced efficiency, local renewable generation, and improved energy equity.

Overview

The Energy sector is the backbone of Oberlin's Climate Action Plan and represents the community's largest opportunity for emissions reductions. Building on Oberlin's national leadership in climate neutral electricity, this sector focuses on large-scale building electrification, deep energy efficiency upgrades, and modernization of the local electric grid including demand response and energy storage capacity. By expanding access to heat pumps, rooftop solar, community solar, and battery storage and by partnering with Efficiency Smart, contractors, and regional utilities, Oberlin will reduce energy bills, improve indoor air quality, strengthen climate resilience, and ensure that the benefits of clean energy reach households and businesses across the community.

Key Themes

- **Electrifying heating and cooling to replace natural gas in businesses and homes**
- **Expanding local renewable energy options**
- **Increasing access to home and business efficiency upgrades**
- **Educating community members about how to participate**
- **Supporting low-income residents with tailored incentive programs**
- **Modernizing the grid for efficiency, demand response, storage, reliability and flexibility**
- **Strengthening the clean energy workforce**

Strategies and Actions

Strategy 1: Promote and Invest in Energy Efficiency

Action 1: Expand Energy Audits, Rebates, and Public Education

- Offer no to low-cost energy audits for homes and businesses.
- Inform residents about rebates and financing for efficiency and electrification upgrades.
- Expand public education on heat pumps, insulation and energy upgrades through public discussions, updated brochures and on community dashboard signs.

Action 2: Support High-Performance and Electrified Buildings

- Promote voluntary building envelope audits and provide recognition for participating building owners and operators.
- Host roundtable discussions for HVAC installers, landlords, and commercial building owners.
- Train contractors on efficient electric technologies and installation best practices.

Action 3: Lead by Example in Municipal Facilities

- Replace aging building systems with high-efficiency electric heat pump models.
- Implement upgrades in municipal facilities to reduce energy use and emissions.
- Benchmark municipal building performance and consider incorporating more real-time metering and display to guide long-term analysis and energy planning.

Strategy 2: Expand Local Solar and Geothermal Renewable Energy Generation

Action 1: Scale Community and Municipal Solar Projects

- Develop community solar and virtual net metering opportunities.
- Install rooftop and ground-mounted solar on municipal facilities.
- Incorporate real-time metering at OMLPS into all large scale solar projects and display these data on the community dashboard.

Action 2: Expand Solar Incentives and Reduce Barriers

- Increase access to residential solar incentives and discounts through POWER, City programs and Solar United Neighbors purchasing Co-ops.
- Promote renter-friendly solar options such as balcony or modular plug-in systems.

Action 3: Diversify Local and Regional Clean Energy Resources and Financing Tools

- Evaluate opportunities to expand Oberlin's participation in regional renewable electricity resources, such as wind and hydroelectric generation, through utility partnerships (AMP and OMLPS).
- Promote opportunities to adopt efficient electrification technologies, including ground-source (geothermal) heat pumps.
- Join regional districts such as Lorain Special Improvement District (SID) and implement Property Assessed Clean Energy (PACE) financing.

What Is Property Assessed Clean Energy (PACE) Financing?

Property Assessed Clean Energy (PACE) financing is a mechanism that allows property owners to finance eligible energy efficiency, electrification, and renewable energy improvements and repay the cost over time through a property tax assessment.

Rather than paying the full cost upfront, participating property owners repay the investment through a dedicated line item on their property tax bill over a set term. The assessment is tied to the property and may transfer to a new owner if the property is sold, subject to program requirements.

PACE financing is authorized by Ohio state law and implemented locally through partnerships with program administrators and lenders. The City does not provide loans directly, but may choose to participate in or promote PACE programs to help residents and businesses access financing for qualifying improvements. When combined with available utility incentives and state or federal programs, PACE financing can help reduce upfront cost barriers and support community-wide energy and emissions reduction goals.

Strategy 3: Phase Out Natural Gas Use Toward Electrification

Action 3: Explore Local Funding Tools for Electrification

- Explore options for a local carbon-fee on natural gas use or other revenue mechanisms.
- Assess feasibility of establishing a new Clean Energy Fund for electrification incentives.

Action 1: Accelerate Heat Pump Adoption

- Expand heat pump education via the community dashboard and hands-on demonstrations.
- Support heat pump adoption by connecting residents and businesses to incentives and financing options, such as utility programs, PACE, and state and federal funding, while exploring targeted local incentives to reduce upfront costs.
- Pursue the creation of a buyers group based on the “Switch together” solar buyers group to create more cost effective options

Action 2: Expand Electric Appliance Adoption

- Offer rebates and bulk-purchase programs for electric appliances (e.g. induction stoves, heat-pump dryers, heat-pump water heaters).
- Provide education for residents and businesses on the benefits of and options for transitioning from gas to electric appliances.

Strategy 4: Enhance Energy Infrastructure and Grid Resilience

Action 1: Modernize Oberlin’s Grid Through Smart Technology

- Deploy advanced metering infrastructure (AMI).
- Solicit expert help and develop a plan for the transition to advanced metering infrastructure, smart metering infrastructure and appliances, demand response and grid-interconnected battery storage
- Develop demand-response programs to reduce peak loads.
- Collaborate with OMLPS on real-time monitoring and grid modernization.

Action 2: Expand Local Energy Storage and Microgrids

- Enhance real-time metering of the grid.
- Work to ensure more reliable data connectivity to the community dashboard so that real-time data can be consistently available to educate the community.

Action 3: Strengthen Long-Term Clean Energy Supply

- Pursue long-term renewable power purchase agreements (PPAs).
- Assess pathways for a phased conversion of the peaking plant to battery storage, or demonstration of hydrogen storage.
- Enhance real-time metering of the grid.
- Work to ensure more reliable data connectivity to the community dashboard so that real-time data can be consistently available to educate the community.

What This Means for Residents

- Lower utility bills through efficiency upgrades
- Improved indoor comfort and home health
- Greater access to renewable energy
- Less power outages/more reliable power during extreme weather
- Expanded rebates and financing for electrification

Why This Matters

Electrification and energy efficiency will be responsible for the majority of the emissions reductions Oberlin has committed to achieving by 2035 or 2030. These upgrades improve local air quality, protect public health by lowering asthma rates and reducing respiratory illness, reduce utility costs, increase home comfort, and make the community more resilient to disruptions. Prioritizing equity ensures that low-income residents and renters benefit from clean energy improvements.

5-Year Priority Actions (2025-2030)

- Expand heat pump adoption across all building types
- Scale community solar and rooftop solar access
- Assess and deploy AMI and begin demand-response programs
- Launch efficiency and electrification programs for low-income households
- Pilot battery storage and microgrid projects

TRANSPORTATION & MOBILITY

Goal

Expand a safe, accessible, and low-carbon transportation system that reduces vehicle emissions, expands mobility options, and supports healthy, connected neighborhoods.

Overview

Transportation is Oberlin's second-largest and most challenging carbon emissions sector. The plan focuses on reducing dependence on single-occupancy vehicles by strengthening public transit, expanding access to electric vehicles, and making walking and biking safer, more convenient and comfortable and more intuitive across the city. Through improvements to sidewalks, bike infrastructure, EV charging, and transit services, Oberlin will build a mobility system that lowers household transportation costs, improves public health, and connects residents of all ages and abilities to essential destinations.

Key Themes

- **Expanding electric mobility options (EVs, safe e-bikes, e-buses)**
- **Improving public transit access and reliability**
- **Making walking and biking safer, more convenient and more connected**
- **Reducing idling and unnecessary vehicle trips**
- **Supporting mobility equity in lower-income neighborhoods**
- **Strengthening wayfinding, signage, and accessibility**
- **Engaging and educating the community regarding the diversity of options available**

Strategies and Actions

Strategy 1: Expand Public Transit and Shared Mobility Programs

Action 1: Improve Regional and Local Transit Connectivity

- Restore and expand regional transit routes in partnership with Lorain County Transit and neighboring communities.
 - Improve transit awareness through better maps, signage, and promotion of the e-bus, the Oberlin Connector and affordability programs.
 - Collaborate and coordinate with Oberlin College and Kendal at Oberlin to expand weekend and evening service for students, seniors and residents.
-

Action 2: Electrify Public Transit, Local Shuttle Options and City School Buses

- Transition transit vehicles to electric models as funding and technology allow.
 - Provide low-carbon shuttle service to Amtrak stations and promote incentives for regional rail travel.
 - Collaborate with City Schools in seeking funds to transition to electric school buses.
 - Publicize transit options through schools, Oberlin College, organizations with physical signage and the community dashboard.
-

Action 3: Expand Shared Mobility Options

- Grow carshare, bikeshare, and micromobility programs across the city.
- Increase access to shared bikes and mobility devices, including adaptive options for seniors and residents with disabilities.

Strategy 2: Increase Electric Vehicle Adoption and Infrastructure

Action 1: Expand the Public EV Charging Network

- Install fast chargers at city facilities and high-traffic public areas.
 - Expand charging options in commercial districts and multifamily housing.
-

Action 2: Electrify City Fleet, Equipment, and Heavy-Duty Vehicles

- Transition municipal vehicles and equipment to electric alternatives as technologies allow.
- Reduce gasoline and diesel use by phasing out fossil-fuel equipment over time.

Action 3: Increase Equitable Access to EVs

- Develop programs and partnerships to reduce cost and access barriers to electric vehicles for low-income and disabled residents, including incentives, shared mobility options, and education.
- Promote rebates, financing options, and options for purchasing used-EVs.

Action 4: Promote EV Education and Visibility

- Highlight EV cost savings, environmental benefits, and performance through public promotional campaigns and community events.
- Partner with local organizations to host EV showcases and ride-and-drive events.

Strategy 3: Enhance Active Transportation

Action 1: Ensure all neighborhoods have equitable access to sidewalks, bikeways, and transit connections, prioritizing underserved areas.

- Implement 2024 Comprehensive Plan to close sidewalk and bikeway gaps.
- Apply Complete Streets policies to improve walking and biking safety, including protected bike lanes and wider sidewalks.
- Increase bike repair stations and wayfinding signage.
- Install covered bike racks in downtown, City Schools and popular remote locations to extend seasons and days when biking is the desirable transportation choice
- Support Safe Routes to School programs.
- Integrate ADA-accessible design and green infrastructure into street improvements.

Strategy 4: Strengthen and Enforce Anti-Idling and Parking Policies

Action 1: Strengthen and Enforce Anti-Idling Policies

- Enforce anti-idling rules for delivery vehicles, buses, and municipal fleets.
- Encourage organizations to adopt and enforce anti-idling policies.
- Designate anti-idling zones near schools, exercise and health care facilities.

Action 2: Modernize Parking Codes and Traffic Management

- Reduce minimum parking requirements in the building code to support infill development and walkability.
- Improve downtown traffic flow, including campus parking coordination and exploring a semi-truck bypass.
- Evaluate a micro-logistics hub to consolidate deliveries and reduce truck congestion.

What This Means for Residents

- Safer walking and biking routes
- Increased access to public transit
- Lower long-term transportation costs
- Cleaner air, especially around school
- More EV charging options across the community

Why This Matters

Transportation emissions have significant impacts on climate, air quality, and community health. Improving transit, electrifying vehicles, reducing idling, and expanding active transportation will reduce Oberlin's largest remaining emissions source while improving safety, affordability, and mobility for all residents.

5-Year Priority Actions (2025–2030)

- Restore and expand regional and local transit routes
- Install additional fast EV chargers across the community
- Implement key sidewalk and bikeway gaps from the Alternative Transportation Plan
- Apply Complete Streets improvements on priority corridors
- Electrify city fleet and expand shared mobility options

HOUSING & BUILDINGS SECTOR

Goal

Ensure that Oberlin's housing stock is affordable, resilient, energy-efficient, and designed for a changing climate.

Overview

Buildings are central to both climate mitigation and quality of life in Oberlin. Much of the city's housing stock is older and in need of upgrades to improve energy performance, comfort, and resilience. This section focuses on expanding affordable and sustainable housing options, improving zoning to support diverse housing types, strengthening green building design, and increasing access to energy-efficient upgrades particularly for renters and low-income households. By modernizing codes, supporting infill housing, and partnering with developers, POWER, and local builders, Oberlin can create homes that are healthier, safer, more affordable, and climate-ready.

Key Themes

- **Expanding affordable and sustainable housing**
- **Supporting green building design and construction**
- **Increasing efficiency and resilience in existing homes**
- **Improving accessibility for renters and low-income residents**
- **Updating zoning to support diverse housing types**
- **Engaging and educating the community regarding the diversity of options available**

Strategies and Actions

Strategy 1: Promote Sustainable Practices for Housing Development

Action 1: Develop Sustainable Affordable Housing on City-Owned Land

- Develop affordable housing on city-owned property using energy-efficient, climate-resilient design.
- Prioritize efficient low-income starter homes and mixed-income infill development.
- Incorporate renewable energy and climate resilient construction practices, technologies and materials in new builds.
- Consider incorporation of real-time metering through a dashboard system so that building performance can be monitored and used for improvement.

Action 2: Champion Sustainable Design and Energy Tracking in New Development

- Implement incentives and permitting tools that support high-performance building standards.
- Track greenhouse gas performance using established certifications (e.g., LEED).
- Publish recommended sustainable design standards and showcase demonstration projects like the Smith House.

Action 3: Support Infill and Diverse, Climate-Ready Housing Options Through Zoning Updates

- Expand allowances for Accessory Dwelling Units (ADUs) to support climate-smart infill.
- Update zoning to allow duplexes, triplexes, cottage courts, and small-scale multifamily housing.
- Ensure zoning supports energy-efficient and resilient housing types.

Strategy 2: Increase Affordable and Cooperative Housing Options

Action 1: Support Cooperative Housing Models

- Promote cooperative, co-housing and shared-equity housing models to enhance affordability and resilience.
 - Provide technical assistance and community education on co-op housing structures.
-

Action 2: Expand Sustainable and Affordable Housing Through Partnerships and Investment

- Offer grants, subsidies, and gap financing for green affordable housing projects.
- Partner with developers and nonprofits to increase income-restricted and sustainable housing supply.
- Coordinate with mission-aligned partners to advance climate-smart affordable housing.

Strategy 3: Implement Green Construction Education and Incentives

Action 1: Expand Education for Contractors and Builders

- Work closely with the Joint Vocational School (JVS) and Lorain County Community College (LCCC) and Oberlin College to promote training on sustainable construction techniques, technologies and materials, efficient building design, and renewable integration.
 - Develop certifications for green building and electrification techniques.
-

Action 2: Support Residential Energy Upgrades Through POWER

- Continue weatherization, efficiency, and electrification upgrades through POWER.
 - Increase access to home improvements for low-income and renter households.
-

Action 3: Recognize Local Leaders in Sustainable Building

- Create a recognition program for builders who incorporate advanced green design.
 - Highlight and publicize outstanding projects that demonstrate climate-smart construction.
-

Action 4: Develop an incentive and recognition program for all electric home development

- Design program, develop rebate levels, determine qualifying all-electric technologies for new and existing homes.
- Partner with builders to launch and refine an initial pilot.

What This Means for Residents

- More affordable and energy-efficient housing options
- Lower monthly utility bills
- Healthier homes with better air quality
- More choices for families, seniors, and first-time homebuyers
- Homes that stay safer and more comfortable during extreme weather

Why This Matters

Efficient, all-electric, and climate-ready homes can help lower energy costs, improve comfort and health, provide resilience in extreme heat, and help Oberlin meet its climate goals. Updated zoning and sustainable construction practices prepare the community for future housing needs while maintaining a strong commitment to equity.

5-Year Priority Actions (2025–2030)

- Support development of affordable, sustainable homes on city-owned land
- Expand zoning to allow diverse, energy-efficient housing types (ADUs, duplexes, cottage courts)
- Grow financing and incentives for green affordable housing
- Increase home energy upgrades through POWER
- Train local contractors on green building and electrification
- Educate and publicize benefits to homeowners, renters, landlords and developers

LAND USE & TREES SECTOR

Goal

Preserve and enhance Oberlin's natural landscapes by expanding the urban tree canopy, protecting open spaces, restoring biodiversity, and transforming underutilized land into vibrant green spaces that strengthen community resilience and ecological health.

Overview

Oberlin's land use strategies focus on creating healthy, connected, climate-resilient landscapes that benefit every resident. By expanding the tree canopy in heat- and flood-prone neighborhoods, restoring native habitats, improving access to parks and open spaces, and integrating green infrastructure into development, Oberlin will reduce stormwater runoff, enhance shade cover, reduce urban temperature, improve air and water quality, and enhance community wellbeing. Through community-driven greening efforts and thoughtful land use planning, the City can ensure that nature-based climate solutions are accessible, equitable, and central to long-term resilience.

Key Themes

- **Expanding and maintaining a healthy urban tree canopy**
- **Creating and revitalizing green spaces in underserved neighborhoods**
- **Reducing chemical pesticide and herbicide use and promoting ecological landscaping**
- **Enhancing nature-based climate resilience**
- **Supporting community stewardship and volunteer programs**
- **Increase shade in walkways and public areas to protect from increases in extreme heat**
- **Engaging and educating the community regarding the diversity of options available**

Strategies and Actions

Strategy 1: Expand and Maintain a Robust and Healthy Tree Canopy

Action 1: Increase Urban Forest Stewardship and Tree Planting

- Prioritize tree planting in heat- and flood-prone neighborhoods and public recreation areas.
- Collaborate with the Open Space and Visual Environment Commission/Volunteer Tree Commission and support community planting events.
- Adopt and implement a Tree and Urban Forest Master Plan with canopy and soil health goals.
- Consider adaptation and resilience as a future tree species selection criteria

Action 2: Integrate Trees and Green Infrastructure into Development

- Update zoning to require trees, shading, and green infrastructure in development and parking areas.
- Balance canopy expansion with solar access and other land-use needs.

Strategy 2: Increase Acreage and Maintain Healthy Parks, Greenways, and Open Spaces

Action 1: Identify and Reclaim Vacant Lots for Green Uses

- Convert vacant or underused parcels into pocket parks, native habitats, or community gardens.
- Support community-led planning and long-term maintenance partnerships.

Action 2: Prioritize Park and Green Space Equity

- Expand access to parks and trails in neighborhoods with limited open space.
- Apply placemaking approaches to strengthen identity and reinvestment in priority areas.
- Expand areas for community members to exercise outdoors under cover of shade protection from sun and extreme heat.
- Expand access to drinking water in parks and greenspaces to ensure hydration.

Action 3: Promote Biodiversity Through Regenerative Landscaping

- Integrate mini-forests and regenerative landscaping citywide, particularly in unused lots.
- Partner with local organizations on pollinator education and native landscaping programs.

Strategy 3: Implement Green Infrastructure and Protect Waterways

Action 1: Eliminate Harmful Chemicals on City Property

- Minimize use of synthetic fertilizers, pesticides and herbicides in favor of organic land care.
- Develop partnerships with Oberlin College, Kendal, City Schools and other institutions that manage large land areas to reduce glyphosate use and expand natural land management.

Action 2: Establish No-Mow, Meadow, Climate Resilient Plant and Native Plant Zones

- Designate low-maintenance zones to increase habitat, reduce mowing emissions, and improve biodiversity.
- Plant native species and species adapted to the changing climate in appropriate areas to support climate resilience.

Action 3: Raise Awareness about Natural Yard Care

- Provide workshops and outreach on composting, leaf management, and pollinator-friendly landscaping.
- Encourage residents and developers to use native species and reduce turfgrass.
- Use the community dashboard to actively promote household-scale options and actions available

What This Means for Residents

- Cooler neighborhoods with more shade
- Reduced flooding from nature-based stormwater solutions
- More spaces for recreation and community gardening
- Improved air quality and stronger wildlife habitat
- Community stewardship of local green spaces
- Strengthened biodiversity
- Ability to recreate and exercise outdoors in the shade in extreme heat

Why This Matters

Healthy landscapes are essential to climate resilience. Trees and green spaces cool neighborhoods through both shade and evapotranspiration, capture stormwater, and improve air and water quality. Oberlin's approach centers equity, ensuring that all residents benefit from greener, safer, more resilient environments.

5-Year Priority Actions (2025–2030)

- Expand tree planting in underserved and heat-vulnerable neighborhoods and public spaces
- Implement regenerative landscaping and mini-forest pilots
- Assess vacant lots for conversion to community green spaces
- Expand pesticide-free and organic land management practices

WATER

Goal

Strengthen Oberlin's water systems to reduce flooding, improve water quality, expand green infrastructure, and prepare for more frequent extreme rainfall.

Overview

With heavier rain events already impacting the region, Oberlin must modernize its wastewater and stormwater systems while expanding green infrastructure that absorbs runoff and protects waterways. Residents and City staff have expressed concerns about localized flooding, aging pipes, and long-term system capacity. This sector focuses on upgrading critical infrastructure, restoring natural water systems, reducing chemical runoff, and supporting water conservation programs. Through partnerships, community engagement, and targeted investments, Oberlin will improve system reliability, reduce flood risks, and protect watershed health for future generations.

Key Themes

- **Expanding green infrastructure to absorb stormwater**
- **Supporting residents in flood-prone neighborhoods**
- **Modernizing wastewater and stormwater systems**
- **Advancing graywater and rainwater reuse**
- **Restoring streams, wetlands, and riparian corridors**
- **Reducing agricultural runoff through regional partnerships**
- **Increasing community awareness and appreciation of critical role of infrastructure in climate resilience**

Strategies and Actions

Strategy 1: Explore and Invest in Wastewater System Improvements

Action 1: Upgrade Wastewater Infrastructure

- Support replacement of aging lateral lines (private pipes that connect a home or business to the public sewer system) to reduce infiltration into the wastewater collection system.
- Provide rebates for backwater valves for low-income households.
- Educate residents on coordinating lateral line replacements with capital projects.

Action 2: Explore Further Resource Recovery at the Wastewater Treatment Plant

- Evaluate additional anaerobic digestion, biosolid energy production, and other opportunities for recovering energy from wastewater,
- Explore long-term investment pathways for resource recovery systems.
- Share findings regionally to support replication and partnerships.

Action 3: Lead by Example in Municipal Water Efficiency

- Require WaterSense-certified appliances in City facilities.
- Incorporate water-efficient fixtures during municipal building upgrades.

Strategy 2: Bolster Stormwater Management and Green Infrastructure Programs

Action 1: Encourage Green Infrastructure in New Development

- Update zoning to encourage retention ponds, wetlands, permeable pavements, and similar nature-based features.
 - Integrate green infrastructure into street improvements through bioswales and native plantings.
-

Action 2: Incentivize Green Infrastructure on Private Property

- Offer rebates for rain gardens, rain barrels, and wetland restoration.
 - Promote resident adoption of nature-based stormwater management practices.
-

Action 3: Expand Community Engagement in Stormwater System Maintenance

- Train residents to keep storm drains clear through volunteer programs.
 - Engage neighborhoods in monitoring flooding hot spots.
-

Action 4: Modernize Storm Systems with Technology and Capacity Improvements

- Upgrade stormwater pipes and drainage systems to handle heavier rainfall.
- Install smart monitoring technology to detect blockages and system issues
- Expand storm drain capacity in vulnerable areas.

Strategy 3: Protect Local Water Resources

Action 1: Implement Riparian Setbacks and Natural Buffers

- Require native vegetation along waterways to prevent erosion and improve habitat.
 - Replace open ditches with vegetated buffers and support cold-water habitat creation.
-

Action 2: Restore and Protect Plum Creek and Other Waterways

- Partner with local organizations to reduce runoff and improve water quality.
- Monitor restoration progress and expand riparian restoration efforts.
- Continue to support multiple real-time water quality monitoring stations on Plum Creek and display on dashboard of key water quality parameters including: water flow, turbidity, dissolved oxygen and total dissolved solids

Action 3: Reduce Agricultural Runoff in the Region

- Work with regional farmers to promote regenerative practices and soil health.
- Collaborate on policies and incentives to reduce nutrient pollution entering the watershed.

Strategy 4: Advocate for Local Water Conservation

Action 1: Pilot Water Reuse and Rainwater Harvesting Systems

- Pilot rainwater harvesting and graywater systems at City facilities.
- Promote voluntary reuse systems for irrigation and non-potable uses.

Action 2: Educate Residents on Water Efficiency

- Launch public outreach on leak detection, irrigation efficiency, and water-wise appliances.
- Increase awareness of water, wastewater and stormwater systems serving the community.

Action 3: Engage Large Water Users in Conservation Programs

- Support schools, businesses, and institutions in reducing water consumption.
- Develop recognition programs for water-efficient practices.
- Better communicate the climate and economic benefits of conserving water in a water-rich environment through the community dashboard and other methods.

What This Means for Residents

- Less flooding and fewer backups
- Better water quality in streams and wetlands
- More attractive, greener neighborhoods
- Clear information on saving water and reducing bills
- Stronger protection during heavy rains and storms
- Improved understanding of sustainable water use, management and climate

Why This Matters

A future-ready water system is essential for public safety and climate resilience. By combining engineered upgrades with nature-based solutions, Oberlin can reduce flood risks, protect waterways, and improve neighborhood health especially for residents most vulnerable to extreme rainfall.

5-Year Priority Actions (2025–2030)

- Upgrade aging wastewater lateral mains in priority areas
- Expand rebates for rain gardens, barrels, and sump pumps
- Require green infrastructure in all new development
- Restore riparian buffers and implement Plum Creek restoration projects
- Pilot rainwater harvesting and graywater systems at City facilities
- Better communicate real-time information on water quality and conservation opportunities

WASTE & MATERIALS MANAGEMENT

Goal

Reduce waste, increase reuse and recycling, and expand composting to move Oberlin toward becoming a circular, zero waste community.

Overview

Waste reduction is a key climate strategy that reduces emissions from landfills, manufacturing, and the transport of goods. Oberlin benefits from strong existing programs including curbside recycling since 1994, curbside composting since 2022 and drop-off recycling since April 2025. Community reuse efforts are also strong and growing. While robust overall, residents identified opportunities to improve clarity, convenience, and program participation. This sector advances Oberlin toward a circular materials system by expanding composting infrastructure, improving recycling access and contamination reduction, supporting reuse and repair programs, and encouraging sustainable purchasing across homes, businesses, and institutions.

Key Themes

- **Expanding composting and organic waste diversion**
- **Improving recycling access and reducing contamination**
- **Increasing reuse, repair, and textile recovery**
- **Reducing single-use plastics and packaging waste**
- **Supporting sustainable procurement practices**
- **Strengthening engagement, education and communication on waste-reduction and reuse options**
- **Reduce construction waste through material recovery and reuse**

Strategies and Actions

Strategy 1: Expand Composting Programs and Infrastructure

Action 1: Expand Curbside and Community Composting Access

- Expand institutional and commercial compost collection.
- Partner with the City school district to improve compost sorting and reduce contamination.

Action 2: Strengthen Compost Education and Behavior Change

- Launch community-wide composting education and outreach campaigns.
- Partner with schools and community groups to increase participation and reduce contamination.
- Leverage the community dashboard to promote composting initiatives.

Strategy 2: Improve Recycling Infrastructure, Education, and Materials Options

Action 1: Improve Recycling Convenience and Accessibility

- Expand glass recycling and evaluate curbside collection options.
- Increase drop-off sites for hard-to-recycle materials (e.g., textiles, electronics).

Action 2: Update Zero-Waste Planning and Tracking to Guide Long-Term Progress

- Update the City's Zero Waste Plan to more fully align with the Climate Action Plan.
- Conduct periodic waste audits to track community progress and inform annual reporting.

Action 3: Strengthen Recycling Education and Reduce Contamination

- Partner with Republic Services on multilingual recycling rules and outreach.
- Relaunch “4 strikes” - a contamination reduction program.
- Collect and publish participation data to inform targeted education through the community dashboard.

Strategy 3: Reduce Waste at the Source and Strengthen Reuse

Action 1: Support Local Reuse and Repair Initiatives

- Use the Sustainable Reserve Fund to support Fix-It Centers, Free Stores, and reuse hubs.
- Explore textile recycling opportunities and community drop-off locations.

Action 2: Reduce Single-Use Plastics and Packaging

- Encourage reusable container programs for retail purchases and local restaurants and cooperative purchasing for compostable packaging to reduce costs.
- Explore reducing single-use plastics and other disposables in City operations, public facilities, and City-permitted events through procurement standards, event guidelines, and waste-reduction requirements.
- Establish a City policy around City events and meetings to reduce use of disposables.

Action 3: Require Waste-Free Practices in City Operations and Events

- Require all city-hosted and permitted events to provide waste, recycling, and composting bins.
- Model zero-waste practices in municipal buildings and public spaces.

Strategy 4: Advance Sustainable Purchasing

Action 1: Adopt a Sustainable Purchasing Policy for City Operations

- Create new policies and procedures that require green purchasing of products with a high impact.
- Expand waste and recycling infrastructure at City facilities.

Action 2: Support Sustainable Purchasing Across the Community

- Share the City’s procurement framework with local businesses to encourage broader adoption.
- Host meetings to share best practices for sustainable procurement among organizations involved in large scale purchasing such as the City, Oberlin College, Kendal, the City Schools and larger retailers.

Strategy 5: Encourage Retention and Reuse of Construction Materials

Action 1: Support Construction and Demolition (C&D) Material Reuse

- Develop a C&D policy that requires city projects to salvage and reuse quality materials.
- Encourage voluntary participation from private large organizations, developers and residents.

Action 2: Establish Partnerships for Material Recovery

- Strengthen regional and local collaboration to expand reuse and upcycling of building materials.
- Establish standards, partnerships and coordinated procedures for salvaging and reusing materials in renovations and new construction.

What This Means for Residents

- More convenient composting and recycling options
- Clearer guidance on what can and cannot be recycled
- Fewer single-use plastics and cleaner public spaces
- More opportunities to reuse and repair everyday items
- Stronger partnerships between the City, schools, and businesses

Why This Matters

Waste reduction cuts greenhouse gas emissions, protects natural resources, and saves money for households and businesses. A circular materials system keeps resources in use, reduces landfill waste, and supports a culture of repair, reuse, and stewardship thereby strengthening community resilience and environmental health.

5-Year Priority Actions (2025–2030)

- Expand curbside composting and pilot commercial compost routes
- Launch contamination reduction and multilingual recycling outreach
- Increase reuse and repair infrastructure through the Sustainable Reserve Fund
- Evaluate feasibility of a additional anaerobic digestion or Class II composting facility
- Implement a City sustainable purchasing policy and promote community adoption

FOOD SYSTEMS

Goal

Strengthen Oberlin's local food system by expanding access to fresh, affordable food by supporting farmers and local producers and by increasing community resilience through education, urban agriculture, and farmland protection.

Overview

A healthy food system is essential for community wellbeing, economic vitality, and climate resilience. Oberlin residents expressed strong interest in more community gardens, stronger farmers markets, support for new farmers, and better access to affordable, fresh food. This sector emphasizes food justice by ensuring all residents can access nutritious, culturally relevant foods and by promoting land use strategies, local partnerships, and education programs that build a resilient, sustainable food system. Through supporting growers, strengthening distribution networks, and reducing food waste, Oberlin can expand local food access and build long-term resilience.

Key Themes

- **Growing the local farming workforce**
- **Expanding community gardens and edible landscapes**
- **Increasing access to fresh, affordable food**
- **Strengthening food recovery and redistribution**
- **Improving institutional local purchasing**
- **Protecting farmland and promoting urban agriculture**
- **Promoting plant-forward, low-carbon diets**
- **Engaging and educating the community regarding the diversity of options available**

Strategies and Actions

Strategy 1: Support and Expand Local Food Production

Action 1: Expand Food Education in Schools and Community Programs

- Partner with schools, nonprofits, and community groups to integrate gardening, nutrition, and cooking education.
- Offer workshops on climate-resilient gardening, backyard agriculture, composting, and small livestock.
- Collaborate with local partners to build hands-on agricultural learning programs.

Action 2: Strengthen Local Farmer Support and Training

- Partner with new farmer incubators and local food hubs such as City Fresh and George Jones Farm.
- Partner with LCCC, JVS and regional farms to build sustainable agriculture training pathways.
- Provide shared infrastructure, technical assistance, and microgrants for emerging farmers.

Action 3: Enable Urban Agriculture Through Updated Policies

- Update zoning to allow small-scale food production, edible landscaping, and urban agriculture.
- Protect prime agricultural land through conservation easements, strategic land purchases, or a farmland greenbelt.

Action 4: Expand Access to Community Gardens

- Establish community gardens near affordable housing and public spaces.
- Integrate gardens and native plantings into parks and neighborhood public spaces.
- Prioritize planting fruit trees in public areas to increase access to fresh produce and work with community members to assist with maintenance.

Strategy 2: Enhance Food Access and Distribution

Action 1: Improve and Expand the Community Farmers Markets

- Support the summer and winter Farmer's Markets to increase vendor diversity, product offerings, and accessibility.
- Enhance promotion and outreach to boost community participation.

Action 2: Explore Community-Owned or City-Supported Retail Models

- Assess feasibility of cooperative and nonprofit grocery stores.
- Explore neighborhood-scale or mobile food retail to improve access.

Action 3: Strengthen Food Assistance and Nutrition Programs

- Work with Oberlin Community Services to expand access to SNAP, WIC, and other nutrition programs through multilingual outreach and partnerships.
- Improve food access infrastructure with local organizations and mobile distribution programs.
- Partner with 4-H and local farms to connect surplus meat to food pantries.

Strategy 3: Promote Sustainable and Climate-Friendly Food Practices

Action 1: Increase Local Procurement for Institutions and Events

- Promote local food procurement for schools, colleges, and public events.
- Encourage institutions to adopt formal purchasing policies that prioritize local products.

Action 2: Expand Food Recovery and Redistribution Programs

- Collaborate with farms, restaurants, food pantries, and community kitchens to recover surplus food.
- Expand community-wide redistribution programs to reduce waste and meet food needs.

Action 3: Raise Awareness About Low-Carbon and Climate-Friendly Food Choices

- Conduct public education campaigns on plant-based eating, local foods, and low-carbon diets.
- Promote CSA programs and partnerships with local farms to support producers and reduce emissions.

What This Means for Residents

- More places to grow food close to home
- Better access to fresh, affordable produce
- Stronger connections between families, farms, and institutions
- More opportunities to learn gardening, farming, and cooking skills
- Less food waste and more equitable food distribution

Why This Matters

Local food production and distribution reduce emissions from transportation, strengthen food security, and keep resources circulating locally. Supporting farmers, protecting farmland, and empowering residents to grow their own food create a healthier, more resilient community.

5-Year Priority Actions (2025–2030)

- Expand community gardens and edible landscapes, especially near affordable housing
- Strengthen farmer incubator programs and local food hubs
- Revitalize the farmers market with improved access and vendor diversity
- Launch public education on climate-friendly food choices
- Expand food recovery partnerships to reduce waste and address local hunger

LOCAL ECONOMY & WORKFORCE

Goal

Build a resilient, inclusive, and climate-aligned economy by supporting local businesses, growing a green workforce, and shaping sustainable development.

Overview

A thriving, sustainable economy is essential for achieving Oberlin's climate goals. The updated Climate Action Plan supports local businesses by connecting them with sustainability resources, clean energy incentives, and technical assistance. At the same time, Oberlin is expanding its green workforce through training programs in electrification, solar installation, HVAC, and EV maintenance by preparing residents for growing climate-aligned careers.

The new industrial park serves as a model for sustainable development by incorporating energy-efficient design, green infrastructure, and opportunities for business collaboration. Through partnerships with regional institutions, business networks, and educational organizations, Oberlin aims to build local wealth, attract mission-aligned employers, and build a more equitable economy rooted in sustainability.

Key Themes

- **Actively engage businesses in sustainability and climate action**
- **Build equitable clean energy career pathways**
- **Advance sustainable industrial development and design standards**
- **Expand cooperative and community-owned business models**
- **Strengthen attraction and retention of green businesses**
- **Promoting opportunities to both existing local businesses and those that might be attracted by Oberlin's ethos, commitments, and existing green infrastructure**

Strategies and Actions

Strategy 1: Invest in Local Green Workforce Development

Action 1: Expand Green Workforce Training and Scholarships

- Support expansion of LCCC and JVS programs focused on HVAC electrification using heat pumps, solar installation, EV maintenance as well as other building trades.
- Promote electrician training aligned with EV charging and electrification needs.
- Provide scholarships and access pathways to climate-aligned technical fields.

Action 2: Strengthen Apprenticeships and On-the-Job Training Pathways

- Partner with regional organizations to expand apprenticeships and experiential training.
- Host green job fairs, training sessions, and career events in partnership with Oberlin College and local job centers.
- Connect residents with employment and training opportunities in clean energy and sustainability.

Strategy 2: Develop a Sustainable Industrial Park and Local Green Business Ecosystem

Action 1: Promote Sustainable Site and Building Design in the Industrial Park

- Incentivize native landscaping, green infrastructure, and energy-efficient design standards.
- Provide technical assistance to help industrial tenants improve energy performance and reduce waste.
- Reestablish sustainability roundtables to foster shared learning and pilot innovative sustainability practices.

Action 2: Collaborate with Local Business Networks

- Partner with OBP, One Lorain County, and regional chambers to distribute sustainability resources tailored to business needs.
- Conduct sustainability surveys to inform program design, incentives, and technical assistance.
- Strengthen engagement with businesses of all sizes across sectors.

Strategy 3: Develop Incentives for Businesses and Industry to Reduce Fossil Fuel Use

Action 1: Design or Modify Business Incentives for Fossil Fuel Reduction

- Implement or refine financial tools that support business electrification and reduced natural gas consumption.
- Expand incentives and financing programs for commercial retrofits and electric process upgrades.

Action 2: Market Oberlin's Clean Energy Advantage

- Promote Oberlin's 100% renewable electricity to attract mission-aligned businesses.
- Use clean energy branding to support business attraction and economic development.

Action 3: Support Worker- and Community-Owned Cooperatives

- Provide technical assistance, business planning, and startup support for co-ops.
- Collaborate with nonprofits, Oberlin College, and business networks to identify co-op opportunities.
- Offer small grants or loans for cooperative enterprises aligned with climate goals, including reuse/repair, weatherization, and green construction.

What This Means for Residents

- More well-paying local jobs in clean energy and sustainability
- Stronger small businesses with lower operating costs
- Cleaner, more efficient industrial development aligned with community values
- More opportunities for community ownership and local wealth-building

Why This Matters

Economic development and climate action go hand in hand. By training residents for climate-aligned careers, supporting sustainable business models, and building a low-carbon industrial ecosystem, Oberlin strengthens both its economy and its resilience—ensuring long-term prosperity while advancing climate goals.

5-Year Priority Actions (2025–2030)

- Expand HVAC electrification, solar, and EV workforce training pathways
- Launch sustainability roundtables for the industrial park
- Develop incentives for business electrification and clean energy upgrades
- Create startup support for worker- and community-owned cooperatives
- Strengthen partnerships with regional employers and training programs

EDUCATION & COMMUNITY ENGAGEMENT

Goal

Foster a well-informed, engaged community that actively participates in and supports climate action through inclusive education, communication, and outreach.

Overview

Community engagement is essential to the success of Oberlin's Climate Action Plan update. Residents emphasized the need for clearer communication, school partnerships, timely updates, and accessible education about climate solutions.

This sector strengthens climate literacy across City staff, schools, institutions, and neighborhoods. The strategies in this sector also improve communication tools and expand culturally relevant outreach to ensure all residents can participate in the transition to a more sustainable community.

Key Themes

- **Clear, inclusive public communication**
- **School partnerships and youth engagement leveraging school dashboards**
- **Climate literacy for staff and leadership**
- **Outreach tailored to diverse cultural and linguistic audiences**
- **Community-driven events such as Ecolympics, gamification, and volunteerism**
- **Stronger collaboration across institutions and businesses**
- **Improved use of the community dashboard to reach broad and diverse community members**

Strategies and Actions

Strategy 1: Strengthen Community Outreach, Public Communication and Climate Action Leadership

Action 1: Launch Climate Action Awareness Campaigns and Engage Partner Support

- Use digital tools, print materials, the Community Dashboard, and social media to share incentives, rebates, and climate actions.
- Host Climate Cafés, town halls, and culturally relevant neighborhood events; partner with churches, cultural groups, and farms for broader reach.
- Improve City website navigation and create a “What You Can Do” hub with resources, programs, and progress updates.
- Provide regular staff briefings and City Council trainings on climate technologies and program opportunities.
- Translate materials and tailor messaging to ensure equitable access for linguistically and culturally diverse communities.

Action 2: Expand Gamified Engagement and Citywide Competitions

- Scale citywide competitions such as Ecolympics to more deeply engage residents, schools, organizations and all community members.
- Use friendly challenges to motivate participation in energy savings, waste reduction, and sustainable travel behaviors.

Action 4: Further develop Community Voices “Climate Action” content

- Conduct new interviews to expand the diversity represented in the Climate Action content of Community Voices that is displayed on community dashboard screens.
 - Conduct targeted interviews to feature quotes from people who are engaged in the full range of CAP action items discussed in this report.
-

Action 3: Establish a Community Climate Green Team

- Recruit Diverse Community Members & Partners
- Define Roles, Governance & Collaboration Structures
- Support Community-Led Projects & Volunteer Mobilization

Strategy 2: Reintegrate Sustainability Education in Schools

Action 1: Strengthen School-Based Sustainability Programs

- Reinstate field trips, student green teams, and classroom-based environmental learning.
 - Support hands-on activities such as tree planting, habitat restoration, and school gardens.
 - Collaborate with teachers to integrate sustainability and climate literacy into curricula.
 - Support use of Oberlin City Schools Dashboard as a hub for K-12 CAP-focused initiatives emphasizing conservation, electrification, efficient lighting, heat pumps, solar, battery storage and car charging stations
 - Encourage curricular integration of real-time data on citywide electricity use, water use, Plum Creek water quality and new air quality sensors into the curriculum.
 - Support more field trips, student green teams, and classroom-based environmental learning.
 - Support hands-on activities such as tree planting, habitat restoration, and school gardens.
 - Collaborate with teachers to better integrate community dashboard and other sustainability initiatives and climate literacy into curricula.
 - Update the “Water”, “Energy Use”, “Renewable Energy” and “Climate Change” stories on the school’s dashboards so that this content is available to the entire community to enhance understanding of where Oberlin’s resources come from and how they can be protected and preserved.
-

Action 2: Support Youth Leadership in Climate Action

- Partner with youth-led clubs such as the Oberlin Climate Coalition to elevate student leadership.
- Provide volunteer opportunities for K-12 and college students that support CAP implementation.

Goal:

Community-centered
Communication
technology

What This Means for Residents

- Clearer, more accessible information about programs and incentives
- More opportunities to participate in sustainability efforts at any age
- Stronger coordination between the City, schools, and community organizations
- A stronger sense of shared responsibility for climate progress across the community
- A flow of CAP-related knowledge, experience and information from students to families and extended families

Why This Matters

Education builds the social conditions needed for climate action to succeed. When residents understand local solutions, see themselves reflected in the communication, and trust City-led efforts, participation grows. Community-wide climate literacy accelerates program adoption, strengthens civic engagement, and ensures that sustainability is truly a shared effort.

5-Year Priority Actions (2025–2030)

- Launch a citywide awareness campaign with multilingual and culturally relevant materials
- Re-establish school sustainability programs and expand youth leadership opportunities
- Provide regular climate trainings for City staff and City Council
- Scale Ecolympics-style competitions to increase community participation
- Strengthen partnerships with churches, farms, nonprofits, and cultural groups for broader outreach
- Update the CAP Story CAP updates and Energy and water stories featured on the Dashboard and move all relevant content on climate literacy onto the 23 public dashboard screens

Oberlin Cooling Centers (open when temp > 90°)

Mon-Thu 10 AM - 8:30 PM
Fri-Sat 10 AM - 6 PM
Sun 1 PM - 5 PM
(65 S Main St)

Mon-Thu 9 AM - 12 PM
1 PM - 5 PM
Fri 9 AM - 12 PM
1 PM - 4PM
(500 E Lorain St)

Mon-Fri 9 AM - 4 PM
(36 S Prospect St)
Seniors Only

Mon-Fri 9 AM - 4 PM
(106 N Main St)

Be Safe, Be Resilient

RESILIENCE & EMERGENCY PREPAREDNESS

Goal

Strengthen Oberlin's ability to withstand and recover from climate-related hazards by improving emergency preparedness, expanding resilience hubs and cooling resources, investing in resilient infrastructure, and ensuring reliable communication systems for all residents.

Overview

As extreme heat, heavy rainfall, and severe storms become more frequent, Oberlin must strengthen both community readiness and critical infrastructure. Residents have raised concerns about localized flooding, outage risks, heat exposure, and inconsistent access to emergency communication.

This sector focuses on proactive planning, neighborhood-level preparedness, resilient energy and communications systems, and support for vulnerable populations. By combining physical infrastructure upgrades with strong social networks and accessible communication, Oberlin will improve safety, health, and long-term resilience.

Key Themes

- **Bolstering emergency preparedness and heat/flood planning**
- **Expanding cooling resources and resilience hubs**
- **Modernizing infrastructure to withstand severe weather**
- **Strengthening public health systems**
- **Improving digital connectivity for climate resilience**
- **Prioritizing vulnerable neighborhoods and populations**
- **Engaging and educating the community regarding the diversity of options available**

Strategies and Actions

Strategy 1: Improve Community Capacity to Respond to and Withstand Flooding and Extreme Weather

Action 1: Strengthen Emergency Preparedness and Evacuation Planning

- Work with the Oberlin Fire Department to develop disaster-specific transportation and evacuation plans for floods, storms, and outages.
- Provide flood preparedness education and mold remediation guidance for affected neighborhoods.
- Use updated flood-risk maps to prioritize outreach, planning, and interventions in high-risk areas.

Action 2: Expand Community Cooling Resources and Resilience Hubs

- Establish resilience hubs and designated cooling shelters with backup power, trained volunteers, and emergency supplies.
- Increase shade and heat protection through tree planting and canopies in heat-prone public spaces.
- Provide subsidized, energy-efficient AC units and weatherization support for low-income and medically vulnerable residents.
- Continue to promote availability of cooling centers on community dashboard before and during heat events.

Strategy 2: Invest in New Infrastructure and Upgrades to Improve Local Resilience Capacity

Action 1: Modernize Electricity and Communication Systems

- Upgrade electricity and communication networks such as WENS to improve reliability during severe weather.
 - Pursue grants and partnerships to strengthen OMLPS infrastructure and pilot microgrids.
 - Expand multi-platform emergency alert systems, including text, radio, signage, the community dashboard and non-internet methods.
-

Action 2: Expand Community Microgrid and Battery Storage Capabilities

- Develop solar-plus-storage systems at critical facilities that serve double-duty for load shaving during peak demand events in the grid as part of a smart grid.
 - Promote distributed energy resilience through microgrids and community-scale storage.
 - Support time-of-use or variable rate structures to improve grid stability during extreme events.
-

Action 3: Prevent Storm-Related Outages Through Proactive Maintenance

- Continue proactive vegetation management, including tree trimming.
 - Evaluate strategic undergrounding of vulnerable power lines.
-

Action 4: Protect Public Health from Emerging Climate Risks

- Collaborate with the Health Department to conduct a public health education campaign to address ventilation, air quality, and vector-borne diseases.
- Support indoor air quality improvements in homes and workplaces.
- Promote community norms of mutual care during air-quality events or disease outbreaks.
- Support installation of multiple real-time air quality monitoring stations in the City and educational displays of this information on the community dashboard
- Support the deployment of new air quality sensors to monitor particulate concentrations resulting from wildfire smoke and integrate this data for display and easy interpretability on digital signage.

Strategy 3: Strengthen Digital Connectivity for Climate Resilience

Action 1: Expand Reliable Connectivity for Emergency Alerts and Hazard Communication

- Improve emergency alerts using text, radio, signage, and non-digital channels.
- Partner with institutions to distribute real-time weather, flood, and air-quality alerts through trusted networks.

Action 2: Enhance Digital Capacity at Resilience Hubs and Community Facilities

- Equip resilience hubs with backup power, Wi-Fi, charging stations, and accessible devices.
- Provide access to online health information, government services, and emergency updates during outages.
- Work with OMLPS to ensure redundant digital connectivity in critical locations.

Action 3: Support Vulnerable Residents with Access to Climate-Relevant Digital Tools

- Offer outreach and training to help residents sign up for alerts, especially older adults and renters.
- Provide neighborhood-based charging stations in outage-prone areas.
- Collaborate with housing providers to ensure adequate indoor connectivity.

Action 4: Integrate Connectivity Considerations into Climate-Ready Infrastructure Planning

- Incorporate resilient communications features into microgrid, smart meter, and battery storage projects.
- Upgrade municipal facilities with improved digital infrastructure during resilience or energy-related facility upgrades.
- Ensure transit systems provide outage-resilient communication during extreme weather.

What This Means for Residents

- Better preparedness and safer evacuation routes
- More cooling resources during extreme heat
- Fewer power outages and faster recovery after storms
- Improved access to emergency alerts and evacuation information
- Stronger support for vulnerable households

Why This Matters

Climate resilience is about protecting health, safety, and community stability. By modernizing infrastructure, improving communication systems, and strengthening neighborhood support networks, Oberlin will reduce the impacts of extreme weather and ensure all residents, especially the most vulnerable, are protected.

5-Year Priority Actions (2025–2030)

- Expand resilience hubs and cooling centers with backup power
- Launch neighborhood-based emergency preparedness programs
- Upgrade storm-vulnerable segments of the energy and communication grid
- Implement microgrid pilots at key facilities
- Strengthen multi-platform emergency alert systems and digital access

IMPLEMENTATION & GOVERNANCE

Successfully achieving Oberlin's climate goals will require coordinated leadership, clearly defined roles, strong partnerships, and a practical approach to turning strategies into action. This Climate Action Plan (CAP) serves as Oberlin's guiding implementation framework through 2030, providing near-term direction while remaining flexible as technologies, funding opportunities, and community priorities evolve. While the City's long-term vision extends beyond 2030, this plan is intentionally structured to support short, achievable implementation cycles and will be formally updated every five years to ensure continued relevance and impact.

Implementation Framework

Oberlin's updated Climate Action Plan includes 34 strategies, 97 public-facing actions, and 200 subactions, representing a focused and actionable roadmap through the end of the decade. The plan balances quick, high-impact projects with initiatives that require sustained investment, coordination, or policy change. Implementation will be guided by annual workplans, transparent reporting, and ongoing collaboration among City departments, partners, and the community.

The City will implement the CAP through a structured framework that emphasizes accountability and adaptability. Lead agencies will be responsible for advancing priority actions, while supporting partners will help fund, implement, or amplify this work. Progress will be organized into 12–18 month workplan cycles, reported annually to City Council and the public, and refined through continued community engagement.

To reflect the CAP's role as a near-term guiding document through 2030, actions are categorized using shorter implementation timeframes:

- **Short-Term:** Actions that can be completed in less than one year
- **Mid-Term:** Actions achievable within 1–3 years
- **Longer-Term:** Actions requiring 3–5 years, extending to but not beyond 2030

Roles & Responsibilities

Clear governance and shared ownership are essential for successful implementation. City leadership, staff, partners, and residents all play distinct but interconnected roles in advancing climate action.

City Leadership

City Council provides policy direction and oversight by approving climate-aligned budgets and ordinances. Council also integrates climate considerations into capital planning and land use decisions, receives regular progress updates, and adjusts priorities as needed to stay aligned with community goals and emerging opportunities.

City Administration

City administration and department leadership are responsible for translating the CAP into annual implementation workplans and day-to-day action. This includes coordinating across departments and with regional partners, maintaining data and performance tracking systems, pursuing grants and other funding sources, and leading or co-leading sector-specific actions aligned with departmental responsibilities. The City's Sustainability Coordinator will play a central role in this work by supporting cross-department coordination, managing implementation tracking, facilitating partner engagement, and serving as the primary steward of the Climate Action Plan over time.

Key Department Roles

- **Sustainability Coordinator:** Cross-department coordination, CAP implementation oversight, grant support, partner and community engagement, KPI tracking, and coordination of the digital community dashboard content development
- **Public Works:** Streets and active transportation, water, wastewater, stormwater, refuse, recycling and composting, urban forestry, green space management, fleet management
- **OMLPS:** Clean energy procurement, electrification support, grid modernization
- **Planning & Development:** Land use, zoning, housing, economic development
- **Building & Housing:** Code updates, inspections, green building support
- **Communications:** Public outreach, education campaigns, website updates
- **Oberlin's Fire Department:** Emergency response and preparedness

Partner & Community Roles

Oberlin's climate strategies cannot be implemented by the City alone. Success depends on deep collaboration with community-based organizations, educational institutions, utilities, businesses, and residents who bring capacity, trust, and specialized expertise. These partners play a critical role in program delivery, workforce development, education, and investment.

Key Partners

- **POWER:** Residential efficiency, weatherization, and electrification
- **Oberlin College:** Renewable energy, student engagement, institutional decarbonization
- **Oberlin City Schools:** Youth engagement
- **Lorain County Community College and Lorain County Joint Vocational :** Workforce development
- **Republic Services:** Recycling and waste management
- **Oberlin Business Partnership & Chamber of Commerce:** Business sustainability networks
- **Oberlin Community Service (OCS) and local food organizations:** Gardens, redistribution, food security
- **Kendal at Oberlin:** senior citizen engagement, green building development
- **Local farms, Legion Field gardens, Farmer's markets and George Jones Farm:** Regenerative agriculture and food access
- **Regional transportation agencies:** LCT, Amtrak partnerships, NOACA, EV corridor planning
- **State and federal programs:** DOE, EPA and ODNR

In addition to these partnerships, the City will encourage the establishment of a Community Green Team—an open, resident- and stakeholder-driven group that helps lead and support specific aspects of CAP implementation.

The Community Green Team will provide opportunities for residents, students, business owners, and organizational partners to contribute to education, outreach, volunteer programs, pilot projects, and feedback on implementation priorities. This structure helps distribute leadership, build long-term community ownership, and ensure that implementation remains grounded in lived experience.

All residents are also essential partners in implementation. Community members advance climate action by participating in programs and incentives, adopting low-carbon technologies, supporting behavior shifts such as walking or composting, volunteering with City-supported initiatives, and providing ongoing feedback that helps shape future CAP updates.

Funding & Financing

Full implementation of the CAP will require coordinated investment from City resources, state and federal grants, philanthropic partners, and innovative financing tools. Near-term action through 2030 will prioritize funding sources that support rapid deployment, affordability, and equity, particularly those made available through recent federal legislation.

Federal and state programs—such as the Inflation Reduction Act, DOE efficiency and renewable energy funding, EPA Climate Pollution Reduction Grants, and ODNR urban forestry grants—will play a central role. Locally, the City will align implementation with the Capital Improvement Plan, utility incentives through OMLPS's Sustainable Reserve Program, the Office of Sustainability's Sustainable Reserve Fund, and stormwater and fee-for-service programs. Financing tools such as PACE, on-bill financing, green bonds, and revolving loan funds will help accelerate building retrofits, infrastructure investments, and low-income electrification.

Monitoring, Evaluation & Reporting

Strong monitoring and evaluation ensure accountability and maintain momentum. Rather than relying on static reports, the City will use a digital community dashboard as the primary accountability and transparency tool for CAP implementation. The dashboard will provide regularly updated information on progress toward strategies and actions, greenhouse gas trends, key milestones, funding secured, and equity-related participation metrics. The dashboard will support real-time learning and adaptive management, allowing City staff, elected officials, and the community to track progress and identify areas needing additional focus. Annual reviews will still inform work planning and budget decisions, but the dashboard will serve as the central, living record of implementation progress.

In addition to the public-facing digital community dashboard, the City will maintain an internal implementation tracker to support day-to-day management of the Climate Action Plan. This internal tool will be used by the Sustainability Coordinator and City departments to track action-level progress, assign responsibilities, manage timelines, document funding and partnerships, and flag implementation challenges requiring coordination or course correction.

Because this CAP is designed as a living document, the City will conduct a formal update every five years. Each update will reassess goals, refresh the greenhouse gas inventory, incorporate new technologies and policies, and reflect evolving community priorities—ensuring the plan remains responsive and effective beyond 2030.

Key performance indicators (KPIs) will be tracked through a shared, cross-department system and displayed through the dashboard, supporting consistent measurement across sectors such as building electrification, transportation, waste diversion, renewable energy generation, tree canopy, stormwater capacity, and affordable green housing.

Equitable Implementation

Equity remains central to CAP implementation. Major projects and investments will continue to be evaluated through an Equity & Resilience Lens to understand who benefits, whether barriers to participation exist, and how costs and savings are distributed. This approach ensures that climate action reduces energy burdens, improves access to mobility and healthy environments, protects public health, and strengthens resilience—particularly for low-income and historically underserved residents.

A Phased Approach Through 2030

To keep implementation achievable and focused, Oberlin will advance the CAP through overlapping, near-term phases that emphasize progress through 2030. Early phases prioritize quick wins and foundational systems, while later phases build on this groundwork to scale impact. Longer-term actions beyond 2030 will be refined through future CAP updates.

APPENDICES

Appendix A — Stakeholder Interview Participants

- Gerry Anderson, Owner, Watson Hardware
- Jeff Baumann, City of Oberlin Public Works Director, City of Oberlin
- Fadi Boumitri, Owner and CEO, Ascension Biomedical
- Cathleen Bradley (Kathleen J. Bradley), Oberlin resident, Associate Supervisor of Lorain Soil and Water Conservation District, Member of the Green Team and Outreach and Service Committee, Lorain Soil and Water Conservation District / First Church in Oberlin UCC
- Marty Buck (Martin L. Buck), Resident, Member of the Open Space and Visual Environment Commission, active in sustainability initiatives, First Church Green Team
- Joe Comar, Director of Capital Improvement, Oberlin College
- Cynthia Comer, Member of the Resource Conservation & Recovery Commission (RCRC)
- Margie Flood, Executive Director, Oberlin Community Services (OCS)
- Bob Golden, Account Manager, Efficiency Smart for the City of Oberlin
- Dr. David H. Hall, Superintendent, Oberlin Schools
- Ed Harder (Edward Harder), Transportation Coordinator and Master's Student, Kendal at Oberlin and Kent State University
- Tracie Haynes, Key leader in local food justice, community gardening, and equity advocacy, Phillis Wheatley Center (Wheatley Boot Center)
- Kathy Hilton, Board Member & Social Media Coordinator, Oberlin Farmer's Market

- Claudia Jones, Retired development officer and long-time Oberlin community member, Oberlin Heritage Center / Social Equity Plan / Church
- Greg Jones, Energy Advocate, POWER Oberlin
- Nate Joppeck, Owner, Fair Meadow Farms
- Michael Ahern, Leading the Sustainable Infrastructure Project (SIP), Evergreen Energy
- Philip Leppla, Deputy Director and General Counsel, SOPEC (Sustainable Ohio Public Energy Council)
- Krista Long, Lifelong resident, downtown business owner, Ben Franklin downtown / Community Land Trust
- Eve Martinez, RCRC Member, Resource Conservation & Recovery Commission (RCRC)
- Anna Kiss Martinez, Executive Director, City Fresh
- Gene Matthews, Board member, POWER, Oberlin Public Utilities Commission, and the Wilson Bruce Evans Home
- Jennifer McMillin, Northeast Ohio Regional Director, SOPEC (Sustainable Ohio Public Energy Council)
- Jim Sustersic Residential Sales Manager, KD Indoor Comfort
- Chris Norman, Senior Director for Energy and Sustainability, Oberlin College
- Sharon Pearson, Former City of Oberlin Employee and Council Member
- Kate Pilacky, Associate Field Director, Western Reserve Land Conservancy (Oberlin office)
- Elena Pinto-Torres, Independent Ecologist, Independent Ecologist
- Carrie Porter, Director of Planning and Development, City of Oberlin
- Sheri Runals, City staff, Secretary of the RCRC and Public Works Administrative Coordinator, City of Oberlin Public Works
- Tanya Rosen Jones, President, Oberlin Business Partnership (OBP)
- Karen Schaefer, Environmental Journalist & Coordinator, Oberlin Winter Market
- Liz Schultz, Executive Director, Oberlin Heritage Center
- Drew Skolnicki, Director, Oberlin Municipal Light and Power System (OMLPS)
- Lori Sprosty, Public Works Recycling Coordinator, City of Oberlin Public Works
- Joe Walzer, City Councilperson, Climate Action Plan Member, RCRC Member, City of Oberlin / Resource Conservation & Recovery Commission (RCRC)
- Howard Washington, Owner, Minority Electric Co., Inc., sits on POWER's Minority Committee
- David Zelasko, Commercial Solar Consultant, Kokosing Solar (formerly Third Sun Solar)

Appendix B: Equity Considerations Across Top 20 Priority Projects

This appendix summarizes how Oberlin's highest-priority climate actions are expected to deliver equity, community, and climate benefits. It is intended as a transparency and implementation support tool that complements the core Climate Action Plan (CAP).

The projects included here represent the Top 20 Priority Projects identified through a scoring framework that evaluated climate impact, feasibility, and equity considerations. While the strategies and actions themselves are described in detail within the main body of the CAP, this appendix highlights:

- Priority populations and places expected to benefit
- Equity and community outcomes associated with each action
- Key equity considerations relevant to implementation
- Climate mitigation and resilience outcomes
- Additional community co-benefits

This appendix does not introduce new policies or commitments. Rather, it reflects how existing, committee and community-vetted strategies and actions are designed to deliver benefits when implemented thoughtfully and in alignment with stakeholder input.

How to Read This Table

Name of Sector / Strategy: Taken directly from the Climate Action Plan.

Priority Populations and Places Reached: Groups identified through stakeholder interviews, committee input and data analysis as being more vulnerable to climate impacts or systemic barriers.

Equity Benefits: Anticipated outcomes related to affordability, access, health, safety, or opportunity.

Key Equity Considerations: Factors to consider during implementation to ensure benefits are delivered equitably.

Climate Outcomes: Expected mitigation or adaptation benefits.

Other Community Benefits: Additional co-benefits beyond equity and climate.

Notes on Priority Populations

Priority populations referenced in this appendix include, but are not limited to:

- Residents in lower-income or historically under-resourced neighborhoods
- Low-income households and renters
- Seniors living alone and multigenerational households
- People with disabilities
- Single-parent families
- Students and young adults
- Veterans
- Minority-owned and small local businesses
- Residents vulnerable to heat, flooding, outages, or transportation barriers

Appendix chart of equity populations and benefits:

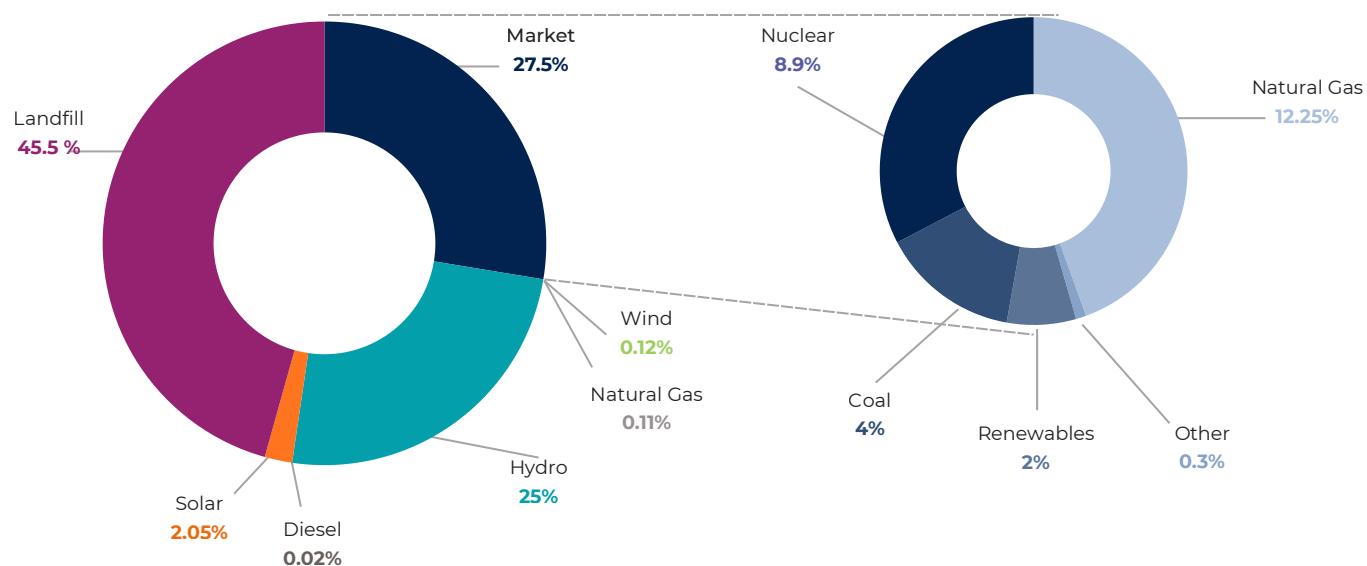
Name of Sector	Name of Strategy	Priority Populations and Places Reached	Equity Benefits	Key Equity Considerations	Climate Outcomes	Other Community Benefits
Buildings & Energy	Accelerate Home Electrification & Energy Efficiency Upgrades	Lower income households; renters; residents in older housing; East, South, SE neighborhoods; seniors; minority owned businesses	Lower energy bills; improved indoor comfort and health; reduced energy insecurity	Need for no- or low-cost programs; renter access; contractor availability	Reduced building emissions; lower energy demand	Healthier homes; workforce skill development
Buildings & Energy	Commercial & Industrial Electrification & Efficiency	Small and minority-owned businesses; local employers	Lower operating costs; increased business resilience	Access to capital; split incentives for tenants; technical assistance needs	Reduced commercial emissions	Local economic competitiveness; local jobs increase if we make industry more efficient
Buildings & Energy	Advanced Metering Infrastructure (AMI) & Smart Grid Tools	All residents; households vulnerable to outages; renters	Improved reliability; access to usage information	Data accessibility; privacy; equitable rate design	Grid efficiency; peak load reduction	Better system planning utility rates are stable or reduced if we have the ability to manage peak power
Buildings & Energy	Community Solar & Solar on City Facilities	Renters; low- and moderate-income households; public facility users	Access to clean energy without homeownership; bill stability	Subscription design; income-qualified access	Renewable energy generation	Public cost savings
Buildings & Energy	Battery Storage at Critical Facilities	Residents vulnerable to outages and extreme weather; seniors; people with disabilities	Reliable access to emergency services	Site selection; community access during outages	Grid resilience	Emergency preparedness
Transportation & Mobility	Restore & Expand Regional Transit	Lower income residents; seniors; people with disabilities; students; workers	Affordable access to jobs, healthcare, services	Ongoing operating funding; service reliability	Reduced vehicle miles traveled	Reduced isolation
Transportation & Mobility	Complete Sidewalk & Bikeway Connections	Residents without cars; seniors; children; people with disabilities	Safer mobility; improved access	ADA design; prioritization of high-need areas	Mode shift	Public safety
Transportation & Mobility	Complete Streets on Priority Corridors	Transit users; pedestrians; cyclists; lower-income neighborhoods	Safer streets; equitable access	Construction impacts; corridor selection	Reduced emissions from driving	Health benefits

Name of Sector	Name of Strategy	Priority Populations and Places Reached	Equity Benefits	Key Equity Considerations	Climate Outcomes	Other Community Benefits
Land Use & Housing	Affordable, Sustainable Housing on City-Owned Land	Lower income households; families; seniors; subsidized housing residents	Long-term housing affordability; lower utility costs	Anti-displacement; long-term affordability	Efficient building performance	Housing stability
Land Use & Housing	Zoning for ADUs & Diverse Housing Types	Seniors; multigenerational households; renters	Expanded housing options; aging in place	Neighborhood acceptance; financing	Compact development	Housing choice
Land Use & Housing	Sustainable Industrial Park	Local workers; small and minority-owned businesses	Job access; economic opportunity	Workforce access; equitable hiring; minority business recruitment	Efficient land use	Economic development
Natural Systems & Resilience	Tree Planting in Heat-Vulnerable Areas	Residents in neighborhoods with less tree canopy; seniors; children	Reduced heat exposure; improved health	Long-term maintenance; equitable siting	Urban heat mitigation	Beautification; reduced utility rates when trees are planted strategically
Natural Systems & Resilience	Plum Creek Restoration	Flood-prone residents; nearby neighborhoods	Reduced flood risk; improved water quality	Construction impacts; land access	Ecosystem resilience	Recreation
Natural Systems & Resilience	Stormwater Upgrades in High-Risk Areas	Lower income and flood-prone households	Reduced property damage; improved safety	Prioritization criteria	Climate adaptation	Infrastructure reliability

Name of Sector	Name of Strategy	Priority Populations and Places Reached	Equity Benefits	Key Equity Considerations	Climate Outcomes	Other Community Benefits
Waste & Circular Economy	Expand Composting & Recycling Access	Renters; multifamily residents; lower-income households	Equitable access to services; cost savings	Education; service coverage	Methane reduction	Cleaner neighborhoods
Waste & Circular Economy	Reduce Waste at the Source	All residents; small businesses	Lower household costs; reuse access	Program accessibility	Lifecycle emissions reduction	Local reuse economy
Food Systems & Workforce	Local Food Production & Training	Lower income households; families; seniors; students	Improved food access; skills development	Land access; program funding	Food system resilience	Community cohesion
Food Systems & Workforce	Green Workforce Training	Lower income residents; students; displaced workers	Career pathways; income opportunities	Program accessibility; employer partnerships	Supports clean energy transition	Local job growth
Resilience & Communications	Resilience Hubs & Cooling Centers	Seniors; people with disabilities; lower income households	Safe spaces during extreme heat/outages	Location; staffing; accessibility	Climate adaptation	Public safety
Resilience & Communications	Emergency Alerts & Digital Connectivity	Residents without reliable internet; seniors especially those living alone; disabled residents	Access to critical information	Multilingual and non-digital access	Emergency preparedness	Community trust

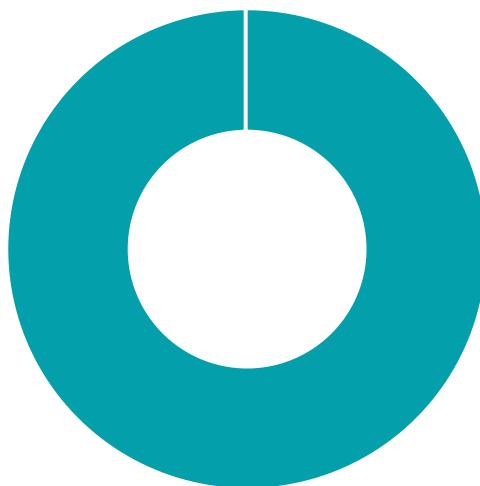
Section 1: Electricity Supply and RECs

According to AMP's 2024 Sustainability Report for Oberlin, about 72% of Oberlin's electricity comes from renewable sources as shown in the table below. About 27.5% is supplied from the general market, which is not guaranteed to be clean.


Total MWh, based on 2024 data (prior to REC transactions) = 105,160

Source %	Projects
Diesel: 0.02%	JV2
Hydro: 24.65%	NYPA, AMP Hydro, Greenup, Meldahl, JV5
Landfill: 45.56%	Erie County Landfill, Geneva Landfill, Mahoning Landfill
Market: 27.50%	Market
Natural Gas: 0.11%	AMPCT, JV2
Solar: 2.05%	Muni Solar
Wind: 0.12%	JV6

The following chart shows the breakdown of the Market portion.


Fuel Types (prior to REC transactions) = 72.38% renewable

To make sure that all electricity supplied to Oberlin residents is renewable, the City purchases Renewable Energy Certificates (RECs) to mitigate emissions from the 27.5% that comes from the market. By doing this, Oberlin is able to officially state that all of the City's electricity is 100% renewable.

The inclusion of landfill gas as a "renewable" source for accounting purposes aligns with AMP's Energy Sustainability Reports. While landfill gas is not technically considered renewable, it is often classified as carbon neutral because it utilizes methane that would otherwise be released into the atmosphere. The City includes this waste-based energy source as renewable to acknowledge these specific recovery efforts and their associated environmental benefits.

Fuel Types (post REC transactions) = 100% renewable

● Renewable Energy Certificates Purchased

Section 2: Emissions Inventory

The Climate Action Plan Update builds on the most recent ICLEI-compliant greenhouse gas inventory, using standardized methods for community-wide accounting.

Inventory Scope

- **Scope 1:** Direct emissions from on-site fuel use (natural gas, heating oil), transportation fuel combustion, waste processing.
- **Scope 2:** Indirect emissions from purchased electricity.
- **Scope 3 (in select cases):** Upstream emissions from purchased goods, food, and transportation when applicable.

Major Emission Sectors

- **Buildings (natural gas use):** Emissions resulting from heating and powering residential and commercial structures.
- **Transportation (gasoline and diesel):** Emissions from the consumption of gasoline and diesel by vehicles traveling on city roads.
- **Waste and wastewater:** Emissions (primarily methane (CH₄) and nitrous oxide (N₂O)) generated from the decomposition of municipal solid waste in landfills and the treatment of wastewater.

The tables below show the results from ClearPath 2.0 in GPC format.

Emission Source by Sector		Total GHGs (metric tonnes CO2e)					
		Scope 1	Scope 2	Scope 3	Basic	Basic+	Basic+ S3
STATIONARY ENERGY	Energy use (all emissions except I.4.4)	40910	0	0	40910	0	0
	Energy generation supplied to the grid (I.4.4)	0	0	0	0	0	0
TRANSPORTATION	Transportation	9790	0	0	9790	0	0
WASTE	Waste generated in the city (III.X.1 and III.X.2)	653	0	2465	3118	0	0
	Waste generated outside city (III.X.3)	0	0	0	0	0	0
IPPU	(all IV emissions)	0	0	0	0	0	0
AFOLU	(all V emissions)	0	0	0	0	0	0
OTHER SCOPE 3	(all VI emissions)	0	0	0	0	0	0
Total		51353	0	2465	53818	0	0

GPC ref No.	GHG Emissions Source (By Sector and Sub-sector)	Total GHGs (metric tonnes CO2e)			
		Scope 1	Scope 2	Scope 3	Total
I	STATIONARY ENERGY				
I.1	Residential	9,912	0	0	9,912
I.2	Commercial & Institutional	27,803	0	0	27,803
I.3	Manufacturing Industries and Construction	2,078	0	0	2,078
I.4.1/2/3	Energy Industries	0	0	0	0
I.4.4	Energy Generation Supplied to Grid	0	0	0	0
I.5	Agriculture, Forestry and Fishing	0	0	0	0
I.6	Non-specified Stationary Energy	0	0	0	0
I.7	Fugitive Emissions from Mining, etc. of Coal	0	0	0	0
I.8	Fugitive Emissions from Oil and Natural Gas Systems	1,117	0	0	1,117
SUB-TOTAL	(city induced framework only)	40,910	0	0	40,910

GPC ref No.	GHG Emissions Source (By Sector and Sub-sector)	Total GHGs (metric tonnes CO2e)				
		Scope 1	Scope 2	Scope 3	Total	
II	TRANSPORTATION					
II.1	On-road transportation	9,790	0	0	9,790	
II.2	Railways	0	0	0	0	
II.3	Waterborne navigation	0	0	0	0	
II.4	Aviation	0	0	0	0	
II.5	Off-road transportation	0	0	0	0	
SUB-TOTAL	(city induced framework only)	9,790	0	0	9,790	
III	WASTE					
III.1.1/2	Solid waste generated in the city	0	0	2,465	2,465	
III.2.1/2	Biological waste generated in the city	0	0	0	0	
III.3.1/2	Incinerated and burned waste generated in the city	0	0	0	0	
III.4.1/2	Wastewater generated in the city	653	0	0	653	
III.1.3	Solid waste generated outside the city	0	0	0	0	
III.2.3	Biological waste generated outside the city	0	0	0	0	
III.3.3	Incinerated and burned waste generated outside city	0	0	0	0	
III.4.3	Wastewater generated outside the city	0	0	0	0	
SUB-TOTAL	(city induced framework only)	653	0	2,465	3,118	
IV	INDUSTRIAL PROCESSES AND PRODUCT USES					
IV.1	Emissions from industrial processes occurring in the city boundary	0	0	0	0	
IV.2	Emissions from product use occurring within the city boundary	0	0	0	0	
SUB-TOTAL	(city induced framework only)	0	0	0	0	
V	AGRICULTURE, FORESTRY AND OTHER LAND USE					
V.1	Emissions from livestock	0	0	0	0	
V.2	Emissions from land	0	0	0	0	
V.3	Emissions from aggregate sources and non-CO ₂ emission sources on land	0	0	0	0	
SUB-TOTAL	(city induced framework only)	0	0	0	0	
VI	OTHER SCOPE 3					
VI.1	Other Scope 3	0	0	0	0	
SUB-TOTAL	(city induced framework only)	2465	53818	0	0	

Inventory Assumptions

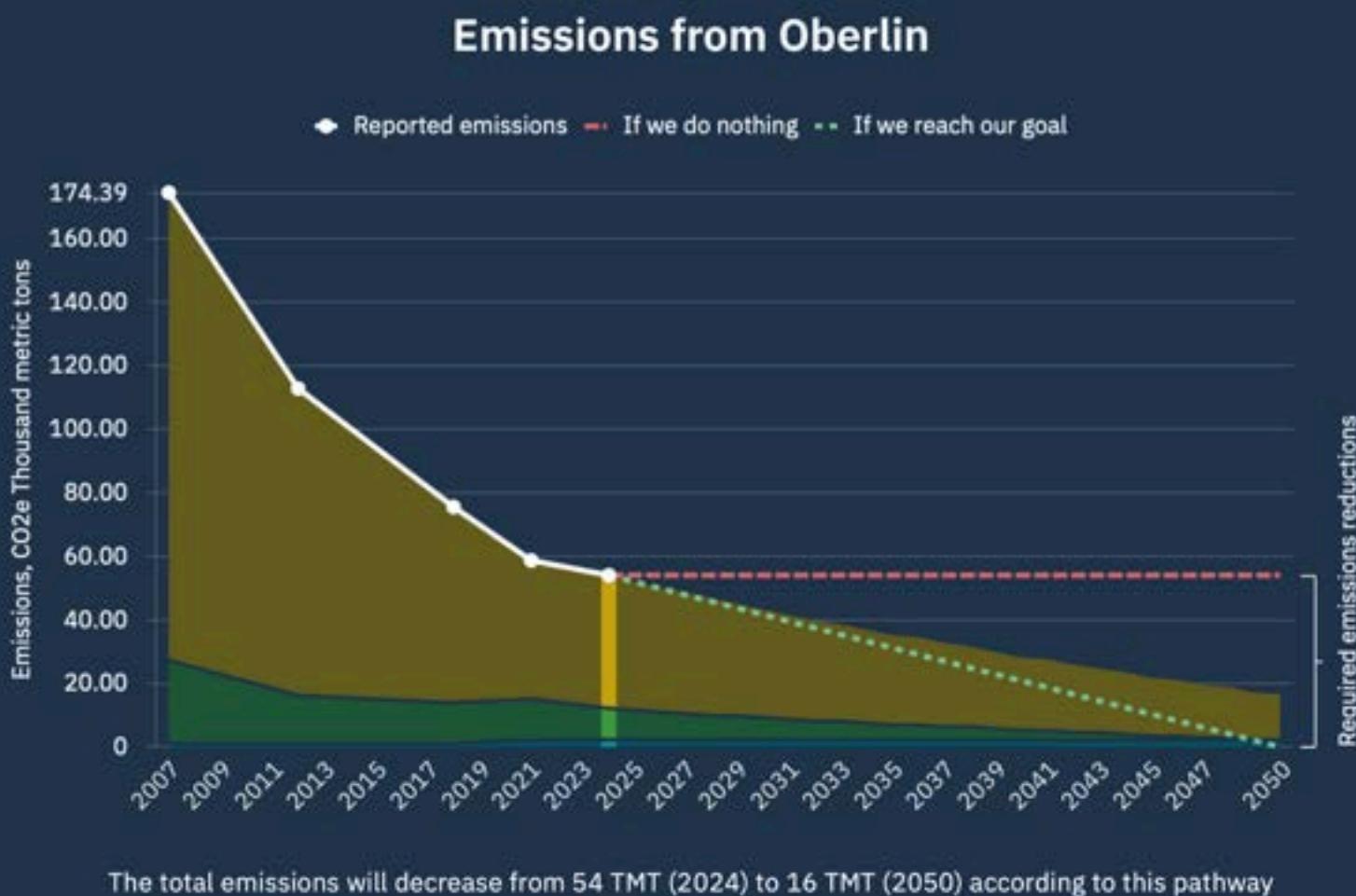
City staff collaborated with various stakeholders to collect the data below, which served as the baseline for estimating the city's greenhouse gas emissions for calendar year 2024.

Category	Sub-category	Activity	Unit	Data	Source Inventory
General Population Characteristics	Population	Total Population	#	8,587	www.census.gov , www.census.gov
General Population Characteristics	Housing	Total Households	#	2,200	https://data.census.gov/profile/Oberlin_city,_Ohio?g=160XX00US3957834
General Population Characteristics	Housing	Population Growth by 2030, 2050		0%	Carrie Porter, City of Oberlin
General Population Characteristics	Housing	Total number of businesses	#	120	Carrie Porter, City of Oberlin
General Population Characteristics	Jobs	Total number of Jobs	#	7,047	Carrie Porter, City of Oberlin
General Population Characteristics	Jobs	Job Growth	#	300-500 by 2030	Carrie Porter, City of Oberlin
Emissions Factors	Electricity	Electricity grid Emissions Factors	lbs/MWh	Diesel: 0.02% JV2 Hydro: 24.65% NYPA, AMP Hydro, Greenup, Meldahl, JV5 Landfill: 45.56% Erie County Landfill, Geneva Landfill, Mahoning Landfill Market: 27.50% Market Natural Gas: 0.11% AMPCT, JV2 Solar: 2.05% Muni Solar Wind: 0.12%	2024 Sustainability Report – Oberlin
Emissions Factors	Fuels	Fuel emissions Factors		Default Standard	Intergovernmental Panel on Climate Change (IPCC) Guidelines

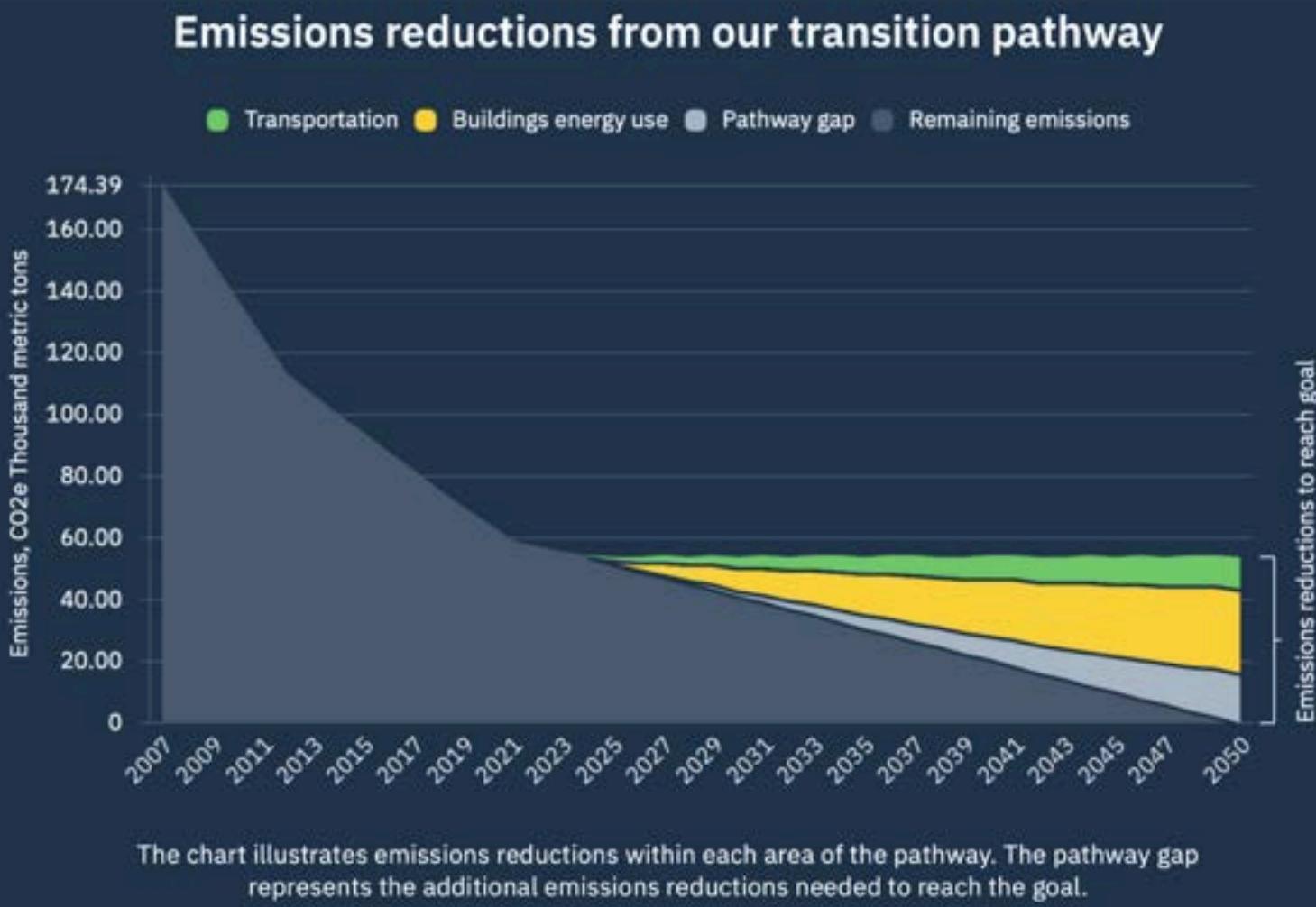
Category	Sub-category	Activity	Unit	Data	Source Inventory
Stationary	Residential Electricity	Electricity consumption	kWh	Residential 20,291,830 Commercial 77,086,175 Industrial 20,649,885	Drew Skolnicki Electric Director City of Oberlin
Stationary	Residential NG	Natural gas consumption	MMBTu	Residential: 186,619 Mcf Commercial: 523,458 Mcf Industrial: 39,106 Mcf	Columbia Gas
General Population Characteristics	Population	Total Population	#	8,587	www.census.gov , www.census.gov
General Population Characteristics	Housing	Total Households	#	2,200	https://data.census.gov/profile/Oberlin_city,_Ohio?g=160XX00US3957834
General Population Characteristics	Housing	Population Growth by 2030, 2050		0%	Carrie Porter, City of Oberlin
General Population Characteristics	Housing	Total number of businesses	#	120	Carrie Porter, City of Oberlin
General Population Characteristics	Jobs	Total number of Jobs	#	7,047	Carrie Porter, City of Oberlin
General Population Characteristics	Jobs	Job Growth	#	300-500 by 2030	Carrie Porter, City of Oberlin
Emissions Factors	Electricity	Electricity grid Emissions Factors	lbs/MWh	Diesel: 0.02% JV2 Hydro: 24.65% NYPA, AMP Hydro, Greenup, Meldahl, JV5 Landfill: 45.56% Erie County Landfill, Geneva Landfill, Mahoning Landfill Market: 27.50% Market Natural Gas: 0.11% AMPCT, JV2 Solar: 2.05% Muni Solar Wind: 0.12%	2024 Sustainability Report – Oberlin
Emissions Factors	Fuels	Fuel emissions Factors		Default Standard	Intergovernmental Panel on Climate Change (IPCC) Guidelines

Category	Sub-category	Activity	Unit	Data	Source Inventory
Stationary	Residential Electricity	Electricity consumption	kWh	Residential 20,291,830 Commercial 77,086,175 Industrial 20,649,885	Drew Skolnicki Electric Director City of Oberlin
Stationary	Residential NG	Natural gas consumption	MMBTu	Residential: 186,619 Mcf Commercial: 523,458 Mcf Industrial: 39,106 Mcf	Columbia Gas
Stationary	Non-residential electricity (commercial, industrial)	Electricity consumption	kWh	Residential 20,291,830 Commercial 77,086,175 Industrial 20,649,885	<u>Drew Skolnicki</u> <u>Electric Director</u> <u>City of Oberlin</u>
Stationary	Non-residential NG (commercial, industrial)	Natural gas consumption	MMBTu	Residential: 186,619 Mcf Commercial: 523,458 Mcf Industrial: 39,106 Mcf	Columbia Gas
Stationary	Industrial	Natural gas consumption	MMBTu	Residential: 186,619 Mcf Commercial: 523,458 Mcf Industrial: 39,106 Mcf	Columbia Gas
Transportation	On-road transportation	VMT by type of vehicle and by fuel type	VMT	20,775,654	NOACC
Waste	Waste	Landfilled solid waste	Tons	3,789.63 tons MSW + 148.95 tons street sweeping and catch basin cleaning. Total = 3,938.58. 5,036.70 from workbook (Total Recovery + MSW)	Jeff Baumann, City of Oberlin
Waste	Waste	Waste characterization	%	31% Newspaper 42% Office Paper 5% Corrugated Cardboard Magazines/Third Class Mail Food Scraps Grass Leaves Branches Lumber	Jeff Baumann, City of Oberlin
Waste	Waste	Landfill Methane Collection Scenario		Average	

Category	Sub-category	Activity	Unit	Data	Source Inventory
Waste	Waste	Landfill Moisture Content	n/a	Moderate	Ohio Department of Natural Resources
Waste	Wastewater	Water treated	gallons per year	44.9	Jeff Baumann, City of Oberlin
Waste	Wastewater	Centralized sewer system that sends wastewater treatment plant	Yes/No	Yes	Jeff Baumann, City of Oberlin
Waste	Wastewater	Treatment plant uses nitrification and denitrification	Yes/No	Yes	Jeff Baumann, City of Oberlin
Waste	Wastewater	Treatment plant uses anaerobic digester to process solids	Yes/No	Yes	Jeff Baumann, City of Oberlin
Waste	Wastewater	Significant number of industrial/commercial facilities that discharge into sewer system	Yes/No	Yes	Jeff Baumann, City of Oberlin
Waste	Wastewater	Percent population served by decentralized septic systems	% area covered	None	Assumed zero


Emissions Forecasting Results from ClearPath 2.0

Oberlin utilized ICLEI's ClearPath 2.0 tool to model emissions through 2050.


The chart below shows three lines.

- Business-as-Usual Path: The red dotted line shows the Business-As-Usual (BAU) path of no action. This path assumes constant energy consumption at current city levels and does not account for population growth in Oberlin.
- Target Path: The green dotted line represents the Target path, which is based on Oberlin's adopted goals of a 75% emissions reduction compared to 2007 levels and 100% by 2050.

Lastly, the green area line shows the Climate Action Plan (CAP) Pathway Scenario, which illustrates a potential path the city could implement to reduce emissions across its key sectors.

This second chart shows the Pathway Scenario, broken down by sector, illustrating the reductions that could be achieved specifically within the buildings (residential and commercial) and on-road transportation sectors. Based on the forecast, we estimate a 75.1% reduction by 2030, and close to a 90.5% reduction by 2050.

The table below shows the pathway assumptions used to model Oberlin's emissions in ClearPath for the transportation sector.

#	Strategy (Transition)	% Assumed	Rationale for Oberlin Context
<i>I. Transportation: Focus on VMT Reduction & Fleet Transition</i>			
1	Proportion of travels by private cars shifted to electric buses	5%	VMT Shift: Reasonable for Oberlin; requires high transit frequency leveraging the concentrated college population.
2	Proportion of travels by private cars shifted to walking and biking	9%	VMT Shift: Highly Feasible due to Oberlin's high density and compact nature as a college town.
3	Proportion Internal Combustion Engine cars shifted to electric cars	43%	Fleet Transition: Necessary for 2030 goal; Oberlin must lead the Midwest in adoption rate.
4	Proportion of travels by private cars shifted to diesel buses	0%	Mandate: Must be 0% to align with the 100% net-zero goal; all public transit must be electric.
5	Proportion of personal vehicle activity performed by cars with improved vehicle technology	90%	Efficiency Floor: Applies efficiency to the small portion of non-ZEV sales until the 95% ZEV target is reached.
6	Proportion of commutes in cars with higher average occupancy	25%	VMT Efficiency: Reasonable for longer, regional commutes; complements the local walking/biking shift.
7	Proportion of travels by private cars avoided by remote working	10%	VMT Avoidance: Achievable by leveraging the college/local business structure for flexible work.
8	Proportion of heavy trucks activity shifted to electric trucks	80%	Fleet Transition: Targets municipal vehicles. The 80% target acknowledges difficulty electrifying regional freight passing through.
9	Proportion of heavy trucks activity performed by trucks with improved vehicle technology	0%	Efficiency Floor: Applies efficiency to pre-ZEV heavy truck purchases.
10	Proportion of heavy trucks activity performed with optimised load factor	25%	VMT Efficiency: Focuses on maximizing regional logistics efficiency.

The table below shows the pathway assumptions used to model Oberlin's emissions in ClearPath for the buildings sector.

#	Strategy (Transition)	% Assumed	Rationale for Oberlin Context
<i>II. Buildings: Focus on Efficiency & Electrification (Heat Pumps)</i>			
11	Proportion of single-family housing heated with gas converted to heatpumps	95%	Electrification: Aggressive but necessary to replace fossil fuel heating across existing stock by 2050.
12	Proportion of single-family housing achieving efficiency target	75%	Efficiency First: Critical for cold climate; minimizes the size and cost of heat pump systems.
13	Proportion single-family buildings cooled with energy efficient ACs	100%	Efficiency: Standard expectation for high-efficiency appliance replacement.
14	Proportion of multi-family housing heated with... converted to heatpumps	100%	Electrification: Higher Target is Justified as much of the MFH stock is owned by the college or large entities, enabling centralized action.
15	Proportion of multi-family housing achieving efficiency target	85%	Efficiency First: Economies of scale for centralized retrofits yield high returns.
16	Proportion of multi-family homes cooled with energy efficient ACs	100%	Efficiency: Sets a high standard for rental stock energy usage.
17	Proportion of commercial buildings heated with gas converted to heatpumps	95%	Electrification: Reasonable target, aligning with equipment replacement cycles for retail and offices.
18	Proportion of commercial buildings achieving efficiency target	85%	Efficiency: Necessary to reduce load on the grid; may require a local Building Performance Standard (BPS) for larger commercial sites.

Key Findings

1. Electrification and Efficiency: Buildings and Transportation

The analysis clearly indicates that deep decarbonization depends primarily on shifting away from fossil fuels in two major end-use sectors: buildings (heating/cooling) and transportation.

- **Impact of Electrification:** Electrification replaces the direct burning of fossil fuels (like natural gas, gasoline, and diesel) with electricity. As the grid itself becomes cleaner (see point 2), the emissions from these sectors drop dramatically. This is the most effective pathway to achieving the deepest emission cuts.
- **Focus on the Commercial Sector:** The commercial sector generates the largest amount of emissions primarily due to the energy intensity of heating, cooling, and operating large facilities (e.g., offices, retail, schools). Focusing on this sector is crucial because:
 - **Scale:** Large buildings offer a greater volume of potential savings per project compared to individual residential units.
 - **Phasing out Natural Gas:** The immediate priority must be transitioning away from natural gas for space and water heating by promoting the adoption of high-efficiency electric alternatives, such as heat pumps.

2. Grid Modernization and Renewable Energy Expansion

The success of electrification hinges entirely on a clean, reliable, and modern electricity grid. Without a renewable energy supply, electrifying buildings and transport simply shifts emissions from the end-user to the power plant.

- **Necessity of Supply-Side Clean Energy:** Continuing to expand the supply of renewable electricity is essential to ensure that every new heat pump installed and every EV purchased operates on clean power.
- **Focus on Local Generation:** Growing the percentage of energy derived from local solar and wind projects, away from reliance on centralized, fossil-fuel-dependent generation, offers multiple benefits:
 - **Economic Benefit:** Local projects keep energy dollars within the community.

- **Grid Modernization:** To handle the increased demand from electrification and the intermittency of solar and wind, the grid requires modernization. This includes investments in smart grid technology, battery storage, and energy management systems to maintain reliability and efficiency.

3. Transportation: Leveraging the Oberlin College Town Advantage

The transportation sector offers a significant opportunity for low-carbon alternatives, especially in a compact, walkable college town environment. The strategy must be two-fold: reducing the need to drive (Mode Shift) and cleaning up the remaining vehicles (Fuel Shift).

A. Prioritizing Vehicle Miles Traveled (VMT) Reduction (Mode Shift)

Due to the high concentration of students, staff, and essential services in a small area, there is substantial potential to reduce Vehicle Miles Traveled (VMT) by promoting and incentivizing alternatives to single-occupancy vehicle use.

- **Active and Shared Mobility:** Continuing efforts to enhance and provide low-carbon alternatives is key. This includes investing in and expanding safe infrastructure for:
 - **Walking and Biking:** Creating complete streets, protected bike lanes, and improving pedestrian safety and connectivity.
 - **Ride/Car Sharing:** Encouraging carpooling and supporting shared mobility services (e.g., carshare, scooter share) to provide convenient options without the burden of private vehicle ownership.

B. Fleet and Vehicle Electrification (Fuel Shift)

For those trips that must still be taken by vehicle, the priority is converting the fleet to zero-emission technology.

- **Electric Vehicle Transition:** The City should continue its efforts to transition municipal and public transit fleets to Electric Trim Vehicles (ETVs). This includes optimizing charging infrastructure and setting procurement mandates for new vehicles.
- **The Clean Grid Imperative:** This transition is only truly beneficial if the electricity used to charge the ETVs is clean. The environmental success of the transportation strategy is directly linked to the progress made in Grid Modernization and Renewable Energy Expansion (see Finding 2). If the City's electricity supply continues to decarbonize, the emissions savings from electric vehicles will grow year after year.

This dual focus on reducing VMT and cleaning the remaining vehicle miles positions the City to maximize reductions from the transportation sector.

4. Waste, Water, and Land Use

While smaller contributors to the overall emissions profile, these sectors provide meaningful and highly visible reductions that contribute to broader sustainability goals and the circular economy.

- **Waste and Material Recovery:** Continuing to prioritize the recovery of waste and recyclable materials reduces the volume of material sent to landfills, thus lowering the release of landfill gas (methane). This also reduces the energy demand associated with producing new materials.
- **Water Efficiency:** Reducing energy usage in the water cycle (treating, heating, and transporting water) directly lowers emissions. Programs focusing on water-efficient appliances and infrastructure leakage repair are key.
- **Land Use and Sequestering:** Implementing strategies that promote carbon sequestration in local green spaces, parks, and agricultural lands (e.g., through urban forestry or soil health practices) helps balance residual emissions and enhances community health.

These findings collectively emphasize a two-pronged strategy:

01 | **Demand-side action (electrifying and increasing efficiency in buildings and transport).**

02 | **Supply-side action (decarbonizing and modernizing the power grid).**

Appendix D — Glossary & Definitions

This glossary provides clear definitions of key terms used throughout the Climate Action Plan. It is intended to make the plan accessible to all readers, regardless of technical background.

Climate & Energy Terms

Carbon Neutrality

Achieving net-zero greenhouse gas emissions by reducing emissions as much as possible and balancing any remaining emissions through carbon removal or offset projects.

Climate Positive

Climate positive, also known as carbon negative, means the City removes more greenhouse gases from the atmosphere than it emits. This goes beyond being carbon neutral, which only requires offsetting emissions to achieve a net-zero balance.

Greenhouse Gases (GHGs)

Gases such as carbon dioxide, methane, and nitrous oxide that trap heat in the atmosphere and contribute to climate change.

GHG Inventory

A detailed accounting of emissions produced within a community from sectors such as energy, transportation, waste, and land use.

Electrification

Replacing systems powered by fossil fuels—such as gas furnaces, water heaters, or gasoline vehicles—with systems powered by clean electricity (such as heat pumps or EVs).

Heat Pump

Highly efficient electric technology used for heating and cooling buildings. Air-source and ground-source (geothermal) heat pumps reduce or replace natural gas use.

Energy Efficiency

Using less energy to perform the same task, such as through insulation, LED lighting, or high-efficiency appliances.

Demand Response

Shifting or reducing electricity use during peak demand periods to stabilize the grid, lower costs, and reduce emissions.

Advanced Metering Infrastructure (AMI)

Digital smart meters that provide real-time energy data, enabling demand response programs and improved utility communication.

Renewable Energy

Energy from naturally replenishing sources such as solar, wind, geothermal, and small-scale hydro.

Community Solar / Shared Solar

Renewable energy projects that allow multiple participants—including renters or those without suitable roofs—to benefit from solar generation. (Note: Terms adjusted to align with Ohio's virtual net metering environment.)

Microgrid

A small, self-sufficient energy system that can operate connected to or independent of the main grid, improving resilience during outages.

PACE Financing

Property Assessed Clean Energy financing that allows commercial and multifamily buildings to fund energy improvements through property-based repayment.

Transportation & Mobility Terms

Active Transportation

Human-powered travel such as walking, biking, or using mobility devices.

Complete Streets

A transportation design approach ensuring streets are safe and accessible for all users—pedestrians, cyclists, drivers, and transit riders.

Road Diet

Reducing the number or width of vehicle travel lanes to create safer, more efficient roads with space for sidewalks, bike lanes, or transit lanes.

Electric Vehicle (EV)

Vehicles powered by electricity instead of gasoline or diesel, including battery-electric and plug-in hybrid vehicles.

Micromobility

Small, lightweight electric or manual vehicles such as e-bikes, scooters, or adaptive bicycles.

Mobility Hub

A location where multiple travel modes—buses, bikes, EV chargers, micromobility—are co-located for convenience.

Buildings, Housing & Land Use Terms

Accessory Dwelling Unit (ADU)

A smaller, independent residential unit located on the same property as a primary home, such as a converted garage or detached guest house.

Green Building

Design and construction practices that reduce environmental impacts, often emphasizing efficient energy use, sustainable materials, and healthy indoor environments.

Construction & Demolition (C&D) Ordinance

A policy requiring certain materials from construction or demolition projects to be salvaged, reused, or diverted from landfills.

Tree Canopy

The layer of leaves, branches, and stems that cover the ground when viewed from above—an indicator of shade, ecological health, and climate resilience.

Riparian Buffer

A vegetated area near a stream or river that helps protect water quality by filtering pollutants and reducing erosion.

Green Infrastructure

Systems that mimic nature to manage stormwater, including rain gardens, bioswales, wetlands, and permeable pavement.

Waste & Materials Terms

Circular Economy

A materials system that emphasizes reuse, repair, recycling, and waste prevention—keeping products in circulation as long as possible.

Composting

The biological process of breaking down organic material (food scraps, yard waste) into nutrient-rich soil amendments.

Anaerobic Digestion

A process that uses microorganisms to break down organic waste without oxygen, producing biogas (renewable energy) and nutrient-rich digestate.

Hard-to-Recycle Materials

Items that cannot be included in standard curbside recycling, such as electronics, textiles, or certain plastics.

Water & Resilience Terms

Stormwater Runoff

Water from rain or snowmelt that flows over land surfaces and can cause flooding if not absorbed or managed.

Greywater

Wastewater from sinks, showers, or laundry (not toilets) that can be reused for irrigation or other purposes with proper treatment.

Floodplain

Low-lying areas near water bodies that are at risk during heavy rainfall or flooding events.

Resilience Hub

A community facility equipped with backup power, cooling, information, and essential services during emergencies.

Urban Heat Island

Areas—typically with high pavement or low tree canopy—that experience higher temperatures than surrounding rural or shaded regions.

Programs & Oberlin-Specific Terms

POWER

Providing Oberlin With Efficiency Responsibly — a community-based organization that supports residential energy efficiency, electrification, and weatherization.

OMLPS

Oberlin Municipal Light and Power System — the City-owned electric utility that provides 100% renewable electricity and leads grid modernization.

Sustainable Reserve Fund (SRF)

A City-managed fund used to support sustainability, energy efficiency, resilience, and climate action initiatives.

Student Green Team

A citywide youth leadership program focused on environmental stewardship, climate action, and hands-on community projects.

Climate Cafés

Informal, conversational community events centered on education, climate dialogue, and accessible climate literacy.

Ecolympics

Friendly competitions encouraging households, schools, or businesses to reduce energy use, waste, or water consumption.

Engagement & Planning Terms

Stakeholders

Individuals or organizations with an interest in or responsibility for climate action—including residents, businesses, institutions, and community groups.

Key Performance Indicators (KPIs)

Quantitative measures used to track progress toward climate goals (e.g., heat pump installations, EV registrations, waste diversion rates).

Five-Year Review Cycle

The planned schedule for updating Oberlin's Climate Action Plan to incorporate new science, technologies, and community needs.

Equity Lens

A structured decision-making tool used to ensure climate actions benefit all residents and do not create or worsen disparities.

